Kvanttitietokoneilla voidaan mahdollisesti ratkaista merkittäviä ongelmia, joihin kaikkein tehokkaimpien supertietokoneidenkaan kapasiteetti ei riitä. Samalla tarvitaan kuitenkin täysin uudenlaista ohjelmointia ja uusia algoritmeja.
Yliopistot ja suuret teknologiayritykset edistävät tutkimusta tällaisten uusien algoritmien kehittämiseksi. Helsingin yliopiston, Aalto-yliopiston, Turun yliopiston ja IBM:n Zürichissä sijaitsevan tutkimuskeskuksen tuoreessa yhteishankkeessa tutkijaryhmä on kehittänyt uuden tavan nopeuttaa kvanttitietokoneiden laskentaa. Tutkimustulokset esiteltiin fysiikan alan American Physical Society -järjestön julkaisemassa arvovaltaisessa PRX Quantum -tiedelehdessä.
– Toisin kuin perinteiset tietokoneet, jotka tallentavat ykkösiä ja nollia bitteinä, kvanttiprosessori tallentaa tietoa kubitteinä, jotka esittävät systeemin kvanttitilaa eli aaltofunktiota, kertoo artikkelin ensimmäinen kirjoittaja, tutkijatohtori Guillermo García-Pérez Helsingin yliopiston fysiikan laitokselta. Tämän takia kvanttikoneissa olevan tiedon lukemiseen tarvitaan erityisiä menetelmiä.
Samoin kvanttialgoritmit tarvitsevat tietynlaisia, esimerkiksi reaalilukuina annettuja syötteitä, sekä listan toiminnoista, jotka toteutetaan jossakin sopivassa prosessorin alkutilassa.
– Tätä kvanttitilaa on itse asiassa yleensä mahdotonta esittää tavallisilla tietokoneilla, joten hyödyllistä tietoa siitä joudutaan etsimään tekemällä tarkkarajaisia havaintoja, joita kvanttifyysikot kutsuvat mittauksiksi, sanoo García-Pérez.
Ongelmia aiheuttaa kvanttitietokoneiden suosittujen sovellusten (kuten Variational Quantum Eigensolver -algoritmin, jolla voidaan selättää kemiantutkimukseen liittyviä merkittäviä rajoitteita muun muassa lääketutkimuksessa) vaatima suuri mittausten määrä. Tarvittavien laskutoimitusten määrän tiedetään kasvavan erittäin nopeasti simuloidun järjestelmän koon mukana siitä huolimatta että mittauksia tehdään rajallinen määrä. Tämä hidastaa laskentaa ja kuluttaa paljon laskentatehoa, mikä vaikeuttaa prosessin skaalaamista ylöspäin.
García-Pérezin ja artikkelin muiden kirjoittajien ehdottamassa menetelmässä hyödynnetään yleistä kvanttimittausluokkaa, jota sovelletaan laskennan aikana niin, että kvanttitilaan tallennettu tieto saadaan ulos tehokkaasti. Menetelmä vähentää huomattavasti toistojen määrää ja siten myös huipputarkkoihin simulaatioihin tarvittavan laskennan kestoa ja kustannuksia.
Menetelmä mahdollistaa aiempien mittaustulosten uudelleenkäytön, minkä lisäksi se osaa säätää omia asetuksiaan. Uudet ajot ovat kerta kerralta tarkempia, ja kerättyä dataa voidaan käyttää yhä uudestaan laskemaan järjestelmän muita ominaisuuksia ilman lisäkustannuksia.
– Otamme kaiken mahdollisen irti joka ikisestä näytteestä yhdistämällä kaiken tuotetun datan. Samalla hienosäädetään mittausta niin, että saadaan erittäin tarkkoja arvioita tutkittavasta suureesta, kuten vaikkapa kohteena olevan molekyylin energiasta. Nämä osatekijät yhdistämällä voidaan vähentää laskennan arvioitua kestoa monen suuruusluokan verran, García-Pérez sanoo.