Neutronitähtiä tutkiva Aleksi Vuorinen sai miljoonarahoituksen

9.1.2017
Fyysikko Aleksi Vuorisen Euroopan tutkimusneuvolta rahoituksen saaneessa ERC-projektissa tavoitteena on neutronitähtien sisältämän aineen ominaisuuksien ennustaminen. Voisivatko neutronitähdet sisältää kvarkkiainetta?

Onnistuessaan Vuorisen työ tulee vastaamaan yhteen hiukkas- ja ydinfysiikan perustavanlaatuisista kysymyksistä: miten tavallinen atomaarinen aine käyttäytyy kaikkein tiheimmissä mahdollisissa olosuhteissa – silloin, kun sitä puristetaan kasaan miltei rajatta?

Sisältääkö neutronitähti aineen uuden olomuodon?

Akatemiatutkija Aleksi Vuorinen Helsingin yliopistosta lähestyy neutronitähtiaineen ominaisuuksia aivan eri suunnasta kuin ydinfysiikassa on tapana: äärimmäisen korkeista tiheyksistä käsin. Työssään hän käyttääkin perinteisen ydinfysiikan koneiston sijaan teoreettisen hiukkasfysiikan menetelmiä.

- Kun hiukkasfysiikan työkalut yhdistää uusimpiin neutronitähtien säteiden ja massojen samanaikaisiin mittauksiin, on mahdollista määrittää neutronitähtiaineen tilanyhtälö ennennäkemättömän tarkasti, Vuorinen sanoo.

Kyse on neutronitähtiaineen termodynaamisista ominaisuuksista, erityisesti paineen ja energiatiheyden välisestä suhteesta.

- Tilanyhtälön avulla on mahdollista tutkia, sisältävätkö tähdet tiheissä ytimissään aivan uutta aineen olomuotoa, jota kutsutaan värivankeudesta vapautuneeksi kvarkkiaineeksi. Sen selvittäminen on neutronitähtitutkimuksen – ja myös oman projektini – merkittävin päämäärä.

Neutronitähtiaine on uskomattoman tiheää: koko ihmiskunta sokeripalan sisällä

Neutronitähtien olemassaolo ennustettiin yli 80 vuotta sitten, ja ensimmäiset näistä todella poikkeuksellisista astrofysikaalisista kohteista havaittiin 1960-luvun lopulla.

- Läpimitaltaan parinkymmenen kilometrin kokoinen tähti voi painaa kahden auringon massan verran, mikä vastaa tiheydeltään sitä, että koko ihmiskunnan yhteenlaskettu massa puristettaisiin noin yhden sokeripalan kokoluokkaan, Aleksi Vuorinen kuvaa.

Näissä olosuhteissa edes atomit eivät säily ehjinä, vaan neutronitähteä voi yksinkertaistetusti ajatella painovoiman yhteen sitomana valtavan suurena atomiytimenä. Tällaisen aineen ominaisuudet ovat kuitenkin äärimmäisen vaikeita määrittää.

Kansainvälistä huomiota herättäneitä tuloksia

Uusi tulokulma neutronitähtien ongelmaan saatiin hiljattain, kun kansainväliset LIGO- ja Virgo-tutkimusryhmät havaitsivat gravitaatioaaltosignaalin kaukaisesta kahden massiivisen mustan aukon yhteensulautumisprosessista.

Tutkijat arvelevat, että jos vastaavia mittauksia pystytään tekemään kahden toisiinsa sulautuvan neutronitähden tai neutronitähden ja mustan aukon systeemistä, neutronitähtien sisältämästä aineesta saadaan valtava määrä informaatiota. 

Jotta tulevaa gravitaatioaaltodataa pystytään hyödyntämään, se pitää kuitenkin osata myös selittää.

Alkuvuoden 2016 aikana Aleksi Vuorinen onnistui yhteistyökumppaninsa Aleksi Kurkelan kanssa laskemaan ensimmäisen tarkan ennusteen tiheän kvarkkiaineen käytökselle neutronitähtitörmäyksen kaltaisissa äärimmäisissä olosuhteissa. Uutta näissä ns. häiriöteoriaa hyödyntävissä tuloksissa oli se, että tutkijat määrittivät kvarkkiaineen käytöksen sekä tiheässä että kuumassa systeemissä, kun aiemmat vastaavat laskut olivat olettaneet systeemin lämpötilan häviävän pieneksi.

- Lämpötilakorjausten huomioiminen on äärimmäisen tärkeää, sillä neutronitähtien yhteensulautumisprosessissa lämpötilat voivat nousta aina noin biljoonaan eli 1.000.000.000.000 Kelvin-asteeseen, Vuorinen sanoo.

Kurkelan ja Vuorisen tulokset julkaistiin Physical Review Letters –julkaisussa kesällä 2016. Ne mahdollistavat neutronitähtien yhteensulautumisprosessin simuloimisen myös, jos törmäävät tähdet sisältävät kvarkkiainetta ytimissään.

ERC-projektissaan Vuorinen jatkaa häiriöteoreettisia laskujaan pyrkien määrittämään kvarkkiaineen tilanyhtälön entistä tarkemmin. Odottaa siis voi, että lähivuosina selviää, kuinka eksoottisia aineen olomuotoja neutronitähdet pitävät sisällään.

Lue lisää:

http://www.helsinki.fi/~arjvuori

https://fi.wikipedia.org/wiki/Neutronit%C3%A4hti

https://en.wikipedia.org/wiki/Neutron_star

http://phys.org/news/2016-08-physicists-gravitational-neutron-star-collisions.html

 

Kil­pail­tu ERC Con­so­li­da­tor Grant

Euroopan tutkimusneuvoston (ERC) Consolidator Grant -rahoitetut tutkijat julkistettiin joulukuussa 2016. Kilpailtua rahoitusta haettiin seuraavalle viisivuotiskaudelle yhteensä 2274 tutkimushankkeeseen, joista 304 sai rahoituksen. Rahoituspotti on yhteensä 605 miljoonaa euroa. ERC Consolidator Grant on tarkoitettu menestyneille tutkijoille, joilla takanaan on 7–12 vuoden lupaava ura tohtorin tutkinnon jälkeen. 

Helsingin yliopistosta rahoituksen saivat tällä hakukierroksella Mikko Niemi, Anna-Liisa Laine ja Jaan-Olle Andersoo. Helsingin yliopiston luonnontieteiden kampukselta, Kumpulasta, rahoituksen saivat fyysikot Emilia Kilpua ja Aleksi Vuorinen.

Lisätiedot: Aleksi Vuorinen, Helsingin yliopiston matemaattis-luonnontieteellinen tiedekunta, 050 338 6725, aleksi.vuorinen@helsinki.fi

Lue Emilia Kilpuasta: https://www.helsinki.fi/fi/uutiset/emilia-kilpua-sai-2-miljoonaa-euroa-aurinkotutkimukselleen

Minna Meriläinen-Tenhu, @MinnaMeriTenhu, 050 415 0316, minna.merilainen@helsinki.fi

Lue lisää aiheesta: Luonnontieteet