Uusi afroaasialaisten lievästi myrkyllisten käärmeiden heimo panee käärmeiden sukupuun uusiksi

Kansainvälinen tutkijaryhmä on uudistanut suuren Elapoidea-käärmeryhmän sukupuun. Työ pohjautuu valtavaan genomiaineistoon sekä evoluution tutkimiseen kehitettyihin huippualgoritmeihin ja -ohjelmistoihin.

Ekologisesti erittäin monimuotoisten käärmeiden Elapoidea-yläheimo on levinnyt maapallolla lähes kaikkialle. Siihen kuuluvat kobrat, mambat ja monet muut maailman tappavimmista käärmeistä.

Tutkimusryhmä kokosi valtavan, lähes 4 600 geenin genomiaineiston – useimmat eläinten perimän luokitteluun käytetyt aineistot koostuvat alle kymmenestä geenistä. Tutkijat sekvensoivat kaikkien tunnettujen yläheimoon kuuluvien heimojen ja alaheimojen perimät ja analysoivat niitä supertietokoneilla. Samalla selvitettiin, vastaavatko käärmeiden anatomiset piirteet genomidatan perusteella rakennettua kehityshistoriaa ottamalla useista myrkkytarhakäärmeiden (Elapidae) museoyksilöistä nano- ja mikrotietokonekerroskuvia.

Uusi merkittävä haara käärmeiden sukupuussa

Tutkijat löysivät Elapoidea-yläheimoon kuuluvan täysin uuden heimon (yläheimo on heimoja yhdistävä tieteellinen luokittelutaso).

Biologit löytävät uusia lajeja ja sukuja varsin usein, mutta täysin uuden selkärankaisten heimon löytyminen on äärimmäisen harvinaista – sitä tapahtuu vain kerran tai korkeintaan muutaman kerran vuosisadassa. Nyt löydettyyn Micrelapidae-heimoon kuuluu kaksi sukua ja kaikkiaan neljä tai viisi lajia, joita tavataan Lähi-idässä sekä itä- ja koillis-Afrikassa.

Elapoidea-yläheimo kattaa noin 700 käärmelajia, jotka jakautuvat useisiin eri heimoihin. Se on yksi lajimäärältään suurimmista käärmeryhmistä. Tutkijat arvioivat, että yläheimon käärmeet kehittyivät kenotsooisella kaudella (tarkkaan ottaen eoseeni-nimisellä ajanjaksolla) arviolta 50–45 miljoonaa vuotta sitten. Elapoidea-yläheimo on malliesimerkki varhaisella kenotsooisella kaudella tapahtuneesta nopeasta radiaatiosta eli levittäytymisestä, minkä takia ryhmän kehityshistoriaa on äärimmäisen vaikea selvittää.

– Näin merkittävän käärmeryhmän lajinkehitykseen liittyvien luotettavien tietojen puuttuminen on haitannut myrkyn evoluution tutkimusta, evoluutioon pohjautuvien suojeluratkaisujen tekemistä sekä museoiden, koulutusasiantuntijoiden ja lääketieteen tutkijoiden välistä viestintää, sanoo tutkija Sunandan Das Helsingin yliopiston organismi- ja evoluutiobiologian tutkimusohjelmasta.

– Kehityshistorian tunteminen on lähes kaiken vertailevan biologisen tutkimuksen perusedellytys, Das lisää.

Tutkimusryhmän tulokset tarjoavat myös menetelmiä kauan sitten tapahtuneeseen nopeaan levittäytymiseen liittyvän evoluution tehokkaaseen tutkimiseen.

Perustutkimus

Tämä tutkimus on perustutkimusta, joka on kaiken yliopistossa tehtävän tieteellisen tutkimuksen perusta. Perustutkimus on ilmiöiden ja toiminnan tutkimusta, joka lisää aiheeseen liittyvää tieteellistä ymmärrystä. Perustutkimus ei tuota suoraan arkipäivän sovelluksia, mutta voi johtaa tieteellisiin läpimurtoihin.

 

Mitä nopea radiaatio on, ja miksi sitä on niin vaikea tutkia?

Evoluution eteneminen muistuttaa puun kasvua: oksa jakautuu kahteen tai useampaan jälkeläishaaraan, joista osa synnyttää uusia oksia samalla, kun toiset oksat kuihtuvat. Siinä missä puussa on eripituisia oksia, elämänpuun oksat eli kehityshistoriat voivat olla lyhyitä tai pitkiä sen mukaan, kuinka kauan yksittäiset sukujuuret ovat olleet olemassa ennen lajiutumista (eli hetkeä, jolloin yksi laji jakautuu kahdeksi evoluution edetessä) uusiksi jälkeläisiksi. Lyhyiden räjähdysmäisten monipuolistumisjaksojen ja uusien lajien synnyn takia osa elämänpuun oksista on lyhyitä. Biologit kutsuvat tällaisia tilanteita nopeaksi radiaatioksi eli levittäytymiseksi.

Lintujen, istukkanisäkkäiden ja monien muiden eläinryhmien nykyisen monimuotoisuuden taustalla on kauan sitten tapahtunutta nopeaa radiaatiota, mutta tämän nimenomaisen evoluutiovaihtoehdon tutkiminen on biologin painajainen.

– Kauan sitten tapahtunut nopea radiaatio on kiperä pähkinä siihen liittyvän molekyylitason eli DNA:n evoluution monimutkaisuuden takia, Sunandan Das sanoo.

Geneetikot kutsuvat geenien erilaisia (mutatoituneita) versioita alleeleiksi. Kun esivanhemman asemassa oleva laji on olemassa pitkään ennen jälkeläislajien synnyttämistä populaation jakautumisen kautta, alkuperäiseen populaatioon yleistyy lopulta yksi tietty versio eli alleeli yksittäisistä geeneistä. Nopean lajiutumisen tapauksessa esivanhemman asemassa olevassa lajissa säilyy kuitenkin useita rinnakkaisia alleeleja, jotka periytyvät jälkeläisille sattumanvaraisesti. Tämä kehityslinjojen epätäydelliseksi järjestymiseksi kutsuttu ilmiö ja muutama muu tekijä tekevät nopeasta radiaatiosta hankalan tutkimuskohteen. Sunandan kollegoineen onnistui ratkaisemaan haasteet hyödyntämällä algoritmeja, jotka kykenevät analysoimaan epätäydellistä järjestymistä ja valtavia määriä genomidataa.