Alumni

Alumni and theses.
MD theses
  • Rony Lindell: Next-generation sequencing using the Anduril framework (2016)
Msc theses
  • Samuel Leppiniemi: Identifying genetic variants explaining variation in gene expression data in high-grade serous carcinoma patients (2023)
  • Susanna Holmström: Functional segmentation of the methylome at whole-genome scale across multiple patient samples (2023)
  • Oskari Lehtonen: Fully convolutional neural networks for nuclei segmentation and type classification (2021)
  • Kari LavikkaGrammar-based interactive genome visualization (2020)
  • Mikko Kivikoski: Computational analysis of tumour evolution: reconstructing evolutionary history of four uterine leiomyomas in one patient (2016)
  • Julia Casado: Integrating ENCODE data to model transcriptional regulation (2014)
  • Chiara Facciotto: MethylFlow: A novel pipeline for preprocessing and analysis of bisulfite sequencing DNA methylation data (2013)
  • Erkka Valo: Prediction of drug effects in gene regulatory networks: Boolean modeling approach (2013)
  • Amjad Alkodsi: Comparison of somatic copy number alteration detection algorithms in whole-genome and whole-exome data (2013)
  • Alejandra CerveraComputational framework for systematic and scalable analysis of deep sequencing transcriptomics data (2012)
  • Ali Oghabian: Application of the biclustering and conventional clustering methods in microarray data analysis (2011)
  • Chengyu Liu: Ensemble learning for predicting breast cancer metastasis using high-throughput expression data (2010)
  • Kari Nousiainen: Petri nets in simulating TNF-α induced cellular signaling (2010)
  • Riku Louhimo: Integrating exon array comparative genomic hybridization data in glioblastoma (2010)
  • Kristian Ovaska: Component-based workflow framework for gene expression microarray analysis (2009)
  • Ping Chen: Computational approaches for alternative splicing analysis using exon arrays (2009)
  • Sirkku Karinen: Computational identification of compound heterozygotes using haplotypes (2008)
  • Marko Laakso: Computational identification of recessive mutations in cancer using high throughput SNP-arrays (2007) [e-thesis]
BSC theses
  • Yilin Li: Signatuurit mutaatioprosessien mallina [Signatures as a model of mutational processes] (2020)

  • Erkka Valo: Identifying combinatorial intervention strategies for gene regulatory networks (2012)

  • Janne Peltola: Androgen receptor induced gene regulation prediction in prostate cancer with random forest algorithm (2008)