Stomatal control, tree water relations and photosynthesis modelling.

My PhD project focuses on the theory of stomatal control and gas exchange in trees. I've been developing a new theoretical framework for stomatal control functions and trying it out using the land surface model JSBACH. I'm also part of the micrometeorology group at INAR / Physics.


Ecosystem ecology, Carbon and Nitrogen budgets of forest - peatland ecotone, Tropospheric ozone

I am studying the effects of drought on CO2, CH4, and N2O dynamics along a boreal forest/mire ecotone. The ecotone is an ecological tension between habitats. In forest/mire transition, below-ground features of poorly drained peatlands overlap with the above-ground features of well drained forests.

Greenhouse gas dynamics of forest/mire transitions are poorly known, because of the relatively narrow extent between forests and peatlands. Although in the scale of boreal forest, the forest/mire transition covers large areas. For example in Finland the forest/mire transition covers approximately 3.1 Million ha, or 14 % of the total forest area.

  • +358 (0)45 1310 513
  • Viikki, B building room 441
  • ORCID: 
  • More information in research database TUHAT

Xylem, nutrition, tree growth modelling

Focused on the height growth decline of old-growth trees, my research centralizes on the hydraulic dynamics and nutrition conditions of the predominant tree species of Finland. Both field measurements and laboratory means are employed in my studies, yet in mathematics I the most trust.

Forest fires in the boreal zone

I am looking into the various short and long-term effects of forest fires on soil carbon and greenhouse gas fluxes in different regions of the boreal biome.

Tree ecophysiology, hydraulic conductance, root systems, drought stress

I am now focusing on the hydraulic conductance of the Scots pine root system, especially effects of the root length on hydraulic properties. In addition, i will cover the implication of hydraulic conductance of the root systems for the distribution of soil water and modeling draught.

Leaf stress relations to optical properties

In my PhD thesis, I focus on improving ways of measuring plant physiological processes through optical means. More specifically the aim is to create a new low-cost sensor for fluorescence imaging and to link the leaf level measurements to canopy level measurements done with drones.


Nitrogen cycling in boreal forests, open science

My research interest is in the interactions between forest plants, forest soil and the atmosphere. Functional balance of trees and elemental mass balances are fundamental concepts in my research. As a special topic, I am working on how to improve the reliability of chamber measurement techniques. Recently, my work has been concentrating more and more on open science and the intersection between the Arts and Science.

Conifer oleoresin, resin dynamics, stem VOCs, tree water relations

In my PhD project I concentrate on conifer oleoresin: on it's dynamics and role in ecosystem. More precisely I look into the oleoresin based defence reactions in a tree, and it's effects on the stem VOC emissions. Also, the dynamics of oleoresin under different moisture and climatic conditions are a part of the project.

Tree root carbon dynamics in boreal forests

My research interests are tree root carbon dynamics in boreal forest ecosystems. The aim of my research is to quantify and model carbon-related processes of Scots pine roots in the framework of whole tree carbon balance and estimate tree carbon dynamics in the chancing climate.



Forest Biomass and Carbon Sequestration, Forest ecosystem modelling

  • +358 (0)2 941 58647
  • kourosh.kabiri [at]
  • Viikki, B building room 321
  • ORCID:
  • More information in research database TUHAT and the Forest Modelling group page

Vegetation and nutrient cycling in subarctic forests

Forest modelling under climate change, remote sensing

My  thesis is working on the process-based modelling on forest under climate change, and also try to combine with remote sensing data to develop on a larger area.

  • Viikki, B building room 519
  • ORCID: 0000-0001-9633-7350
  • More information in research database TUHAT, and Forest Modelling Group page

BVOC production and emissions from soil processes 

Forest tree ecophysiology, nutrient balance

My main topic of study is carbohydrate and nitrogen balance between Pinus sylvestris and forest soil, and how these balances are modified by changing environment conditions. I am also developing different laboratory protocols, mainly biochemical analyses of pine needles.

  • +358 (0)400 931 078
  • Viikki, B building 310
  • ORCID: 
  • More information in research database TUHAT


Methane emissions from trees in boreal forests

Leaf optical properties

During my PhD and as a member of FLUO-SYNTHESIS project, I study the variation in leaf optical properties (absorption, fluorescence and reflectance spectra) across species, light gradients and in response to multiple sources of stress.

Sources of methane emissions from trees in boreal forests

Working for the project From Processes to Modelling of Methane Emissions from Trees (MEMETRE).

  • salla.tenhovirta [at]
  • Biokeskus 1, room 4213 (Viikinkaari 9)
  • More information in the webpage of Methane exchange group 
  • +358 504485845
  • Department of Biosciences, Viikinkaari 1 room 6414

  • ORCID: 
  • More information in research database TUHAT

Water relations of coniferous trees, phloem transport, tree gas exchange

I study the tree water and sugar relations with tree gas exchange in my PhD thesis. Currently, with my collegues I study the influence of fungus infection on water transport in Norway spruce, and the progress of belowground hydraulic conductance and stomatal conductance during growing season in Scots pine.

  • +358 (0)50 430 8316
  • Viikki, B building room 521
  • ORCID: 0000-0002-3674-4904
  • More information in research database TUHAT

Soil microbes in permafrost soil