In a new article published in the journal Conservation Biology, scientists from the University of Helsinki,
Tools for conserving biodiversity
Dr.
“Currently, the lack of tools for efficient monitoring of high-volume social media data limits the capability of law enforcement agencies to curb illegal wildlife trade,” says Dr. Di Minin
“Processing such data manually is inefficient and time consuming, but methods from artificial intelligence, such as machine-learning algorithms, can be used to automatically identify relevant information. Despite their potential, approaches from artificial intelligence are still rarely used in addressing the biodiversity crisis”, he says.
Images, metadata and meaning of a sentences
Many social media platforms provide an application programming interface that allows researchers to access user-generated text, images and videos, as well as the accompanying metadata, such as where and when the content was uploaded, and connections between the users.
MSc
“Machine learning algorithms can be trained to detect which species or wildlife products, such as rhino horns, appear in an image or video contained in social media posts, while also classifying their setting, such as a natural habitat or a marketplace,” he says.
Assistant professor
“Natural language processing can be used to infer the meaning of a sentence and to classify the sentiment of social media users towards illegal wildlife trade. Most importantly, machine learning algorithms can process combinations of verbal, visual and audio-visual content”, Hiippala says.
In the ongoing project, the researchers are applying machine learning methods to automatically identify content pertaining to illegal wildlife trade on social media. They also stress the importance of collaborating with law enforcement agencies and social media companies to further improve the outcomes of their work and help stop illegal wildlife trade on social media.
Reference: Investigating illegal wildlife trade on social media using machine learning: Di Minin, E., Fink, C. A., Hiippala, T. & Tenkanen, H. T. O. 2018. Conservation Biology. Article DOI: 10.1111/cobi.13104. Internal Article ID: 15162111
More information:
Dr. Enrico Di Minin, Digital Geography Lab, Helsinki Institute of Sustainability Science, Department of Geosciences and Geography, University of Helsinki
Email:
Tel: South Africa: +27(0)713469726; Finland: +358(0)458413206
Twitter: @EnTembo
Communication Specialist Riitta-Leena Inki
Email:
Tel: +358 50 448 5770
Twitter: @inkiriitta