Using artificial intelligence to investigate illegal wildlife trade on social media

Illegal wildlife trade is one of the biggest threats to biodiversity conservation and is currently expanding to social media. This is a worrisome trend, given the ease of access and popularity of social media. Efficient monitoring of illegal wildlife trade on social media is therefore crucial for conserving biodiversity.

In a new article published in the journal Conservation Biology, scientists from the University of Helsinki, Digital Geography Lab, argue that methods from artificial intelligence can be used to help monitor the illegal wildlife trade on social media.

Tools for conserving biodiversity

Dr. Enrico Di Minin, a conservation scientist at the University of Helsinki, who leads an interdisciplinary research group where methods from artificial intelligence are being developed and used to investigate the supply chain of the illegal wildlife trade in an innovative and novel way, stresses the importance of such novel methods to identify relevant data on the illegal wildlife trade from social media platforms.

“Currently, the lack of tools for efficient monitoring of high-volume social media data limits the capability of law enforcement agencies to curb illegal wildlife trade,” says Dr. Di Minin

“Processing such data manually is inefficient and time consuming, but methods from artificial intelligence, such as machine-learning algorithms, can be used to automatically identify relevant information. Despite their potential, approaches from artificial intelligence are still rarely used in addressing the biodiversity crisis”, he says.

Images, metadata and meaning of a sentences

Many social media platforms provide an application programming interface that allows researchers to access user-generated text, images and videos, as well as the accompanying metadata, such as where and when the content was uploaded, and connections between the users.

MSc Christoph Fink  stresses how machine learning methods provide an efficient means of monitoring illegal wildlife trade on social media.

“Machine learning algorithms can be trained to detect which species or wildlife products, such as rhino horns, appear in an image or video contained in social media posts, while also classifying their setting, such as a natural habitat or a marketplace,” he says.

Assistant professor Tuomo Hiippala highlights how machine learning methods can be used to process the language of social media posts.

“Natural language processing can be used to infer the meaning of a sentence and to classify the sentiment of social media users towards illegal wildlife trade. Most importantly, machine learning algorithms can process combinations of verbal, visual and audio-visual content”, Hiippala says.

In the ongoing project, the researchers are applying machine learning methods to automatically identify content pertaining to illegal wildlife trade on social media. They also stress the importance of collaborating with law enforcement agencies and social media companies to further improve the outcomes of their work and help stop illegal wildlife trade on social media.

Reference: Investigating illegal wildlife trade on social media using machine learning: Di Minin, E., Fink, C. A., Hiippala, T. & Tenkanen, H. T. O. 2018. Conservation Biology. Article DOI: 10.1111/cobi.13104. Internal Article ID: 15162111

More in­form­a­tion:

Dr. Enrico Di Minin, Digital Geography Lab, Helsinki Institute of Sustainability Science, Department of Geosciences and Geography, University of Helsinki

Email: enrico.di.minin@helsinki.fi

Tel:  South Africa: +27(0)713469726; Finland: +358(0)458413206

Twitter: @EnTembo

Communication Specialist Riitta-Leena Inki

Email: riitta-leena.inki@helsinki.fi

Tel: +358 50 448 5770

Twitter: @inkiriitta

Protecting Rhino

Dr. Enrico Di Minin, a conservation scientist at the Helsinki Institute of Sustainability Science, University of Helsinki, has been working and collaborating with conservation authorities in South Africa for the last 10 years and he has built strong links that allow him to develop policy relevant research that is also novel and can be published in high impact factor journals.

As part of this collaborations, he try to understand what the main conservation issues are in order to develop state of the art analyses that can help address those issues.