Ehsan Khoramshahi väittelee aiheesta Moniprojektivisten kameroiden kalibrointi, mallinnus ja integrointi liikkuvissa kartoitusjärjestelmissä

M.Eng. Ehsan Khoramshahi väittelee maanantaina 14.12.2020 klo 14 aiheesta Moniprojektivisten kameroiden kalibrointi, mallinnus ja integrointi liikkuvissa kartoitusjärjestelmissä. Väitöskirja liittyy Maanmittauslaitoksen Paikkatietokeskus FGI:ssä tehtävään tutkimukseen.

M.Eng. Ehsan Khoramshahi väittelee maanantaina 14.12.2020 klo 14 Helsingin yliopiston Exactum-rakennuksen auditoriossa CK112 (Pietari Kalmin katu 5, pohjakerros) aiheesta Multi-Projective Camera-Calibration, Modeling, and Integration in Mobile-Mapping Systems. Vastaväittäjänä toimi professori Janne Heikkilä (Oulun yliopisto) ja kustoksena professori Petri Myllymäki (Helsingin yliopisto). Väitöstilaisuus pidetään englanniksi. Väitöstilaisuutta voi seurata suorana verkkolähetyksenä osoitteessa https://helsinki.zoom.us/j/63563369057?pwd=UXpteWJDMlFEY2V5cnU1SlhYbGZKUT09.

Ehsan Khoramshahin väitöskirja liittyy Maanmittauslaitoksen Paikkatietokeskus FGI:ssä tehtävään tutkimukseen. Väitöskirjatyön ohjaajina ovat toimineet tutkimusprofessori Eija Honkavaara (Maanmittauslaitoksen Paikkatietokeskus FGI) sekä professori Petri Myllymäki ja apulaisprofessori Arto Klami (Helsingin yliopisto).

Moniprojektivisten kameroiden kalibrointi, mallinnus ja integrointi liikkuvissa kartoitusjärjestelmissä

Optiset kuvauslaitteet ovat keskeisessä roolissa moderneissa konenäköön perustuvissa järjestelmissä kuten autonomiset autot, miehittämättömät lentolaitteet (UAV) ja pelikonsolit. Tällaisissa sovelluksissa hyödynnetään tyypillisesti monikamerajärjestelmiä.

Väitöskirjan ensimmäisessä osassa kehitetään yksinkertainen ja käytännöllinen matemaattinen malli ja kalibrointimenetelmä monikamerajärjestelmille. Koodatut kohteet ovat keinotekoisia kuvia, joita voidaan tulostaa esimerkiksi A4-paperiarkeille ja jotka voidaan mitata automaattisesti tietokonealgoritmeillä. Matemaattinen malli määritetään hyödyntämällä 3-ulotteista kamerakalibrointihuonetta, johon kehitetyt koodatut kohteet asennetaan. Kaksi kaupallista monikamerajärjestelmää, jotka muodostuvat 6 ja 36 erillisestä kamerasta, kalibroitiin onnistuneesti ehdotetulla menetelmällä. Tulokset osoittivat, että menetelmä tuotti tarkat estimaatit monikamerajärjestelmän geometrisille parametreille ja että estimoidut parametrit vastasivat hyvin kameran sisäistä rakennetta.

Työn toisessa osassa tutkittiin ehdotetulla menetelmällä kalibroidun monikamerajärjestelmän mittauskäyttöä liikkuvassa kartoitusjärjestelmässä (MMS). Tavoitteena oli kehittää ja tutkia korkean geometrisen tarkkuuden kartoitusmittauksia. Monikameramallia laajennettiin navigointilaitteiston paikannus ja kallistussensoreihin (GNSS/IMU) liittyvillä parametreillä ja ehdotettiin järjestelmäkalibrointimenetelmää liikkuvalle kartoitusjärjestelmälle. Kalibroidulla järjestelmällä saavutettiin senttimetritarkkuus suorapaikannusmittauksissa. Työssä myös esitettiin monikuville vastaavuuskartta, joka mahdollistaa metristen panoraamojen luonnin monikamarajärjestelmän kuvista.

Kolmannessa osassa tutkittiin UAV:​​n liikeradan reaaliaikaista estimointia hyödyntäen yhteen kameraan perustuvaa menetelmää. Päätavoitteena oli kehittää monokulaariseen kuvaamiseen perustuva reaaliaikaisen samanaikaisen paikannuksen ja kartoituksen (SLAM) menetelmä. Työssä ehdotettiin moniresoluutioisiin kuvapyramideihin ja eteneviin suorakulmaisiin alueisiin perustuvaa sovitusmenetelmää. Ehdotetulla lähestymistavalla pystyttiin alentamaan yhteensovittamisen kustannuksia sovituksen tarkkuuden säilyessä muuttumattomana. Kardaanilukko (gimbal lock) tilanteen käsittelemiseksi toteutettiin uusi kulmajärjestelmä. Tulokset osoittivat, että ehdotettu ratkaisu oli tehokas ja tarkka tilanteissa joissa kohde on lähes tasomainen. Suorituskyvyn arviointi osoitti, että kehitetty menetelmä täytti UAV:n reaaliaikaiselle reitinestimoinnille annetut aika- ja tarkkuustavoitteet.

Työn viimeisessä osassa tutkittiin puulajiluokitusta käyttäen hyperspektri- ja RGB-kameralla varustettua UAV-järjestelmää. Tavoitteena oli tutkia uusien koneoppimismenetelmien käyttöä tarkassa puulajiluokituksessa ja lisäksi vertailla hyperspektri ja RGB-aineistojen suorituskykyä. Työssä verrattiin 3D-konvoluutiohermoverkkoa (3D-CNN) ja monikerroksista perceptronia (MLP). Molemmat luokittelijat tuottivat hyvän luokittelutarkkuuden, mutta 3D-CNN tuotti tarkimmat tulokset. Saavutettu tarkkuus oli parempi kuin aikaisemmat julkaistut tulokset vastaavilla aineistoilla. Hyperspektrisen ja RGB-datan yhdistelmä tuotti parhaan tarkkuuden, mutta myös RGB-kamera yksin tuotti tarkan tuloksen ja on edullinen ja tehokas aineisto monille luokittelusovelluksille.

Väitöskirjan saatavuus

Väitöskirjan elektroninen versio on saatavilla Helsingin yliopiston e-thesis-palvelussa osoitteessa http://urn.fi/URN:ISBN:978-951-51-6846-7.

Painettuja väitöskirjoja voi tiedustella väittelijältä itseltään: ehsan.khoramshahi@helsinki.fi