Data protection

Our research projects involve processing of personal data. The purpose of a data protection notice is to provide information on personal data processed in research projects, from where they are obtained and how they are used.

Fore more detailed information regarding data protection, please contact tietosuoja@helsinki.fi.

You can download the data protection notices for our projects below.

STRATIFY: Diagnostic autoantibody assay to stratify bone marrow failure diseases

Bone marrow failure syndrome (BMFS) refers to a heterogeneous group of rare diseases characterised by the loss of red and white blood cells as a result of blood stem-cell malfunction. The EU-funded STRATIFY project aims to develop a BMFS test using an inexpensive reagent kit and standard serology machines for autoantibody screening. Project researchers previously identified an autoantibody that defined a distinct group of BMFS patients with similar genetic backgrounds, suggesting common pathogenesis. The autoantibody analysis was able to reveal cases of aplastic anaemia and define a subset of BMFS patients with similar underlying pathology that lacks diagnosis as yet. Current objectives are establishing technology proof-of-concept and evaluating commercialisation options.

More information about the project available here.

M-IMM: Novel etiology of autoimmune disorders: the role of acquired somatic mutations in lymphoid cells

Molecular pathogenesis of most immune-mediated disorders, such as of autoimmune diseases, is poorly understood. These common maladies carry a heavy burden both on patients and on society. Current therapy is non-targeted and results in significant short- and long-term adverse effects.

Large granular lymphocyte (LGL) leukemia is characterized by expansion of cytotoxic T- or NK-cells and represents an intriguing clinical continuum between a neoplastic and an autoimmune disorder. Patients suffer from autoimmune cytopenias and rheumatoid arthritis (RA), which are thought to be mediated by LGL cells targeting host tissues. My group recently discovered that 40-50% of LGL leukemia patients carry in their lymphoid cells acquired, activating mutations in the STAT3 gene – a key regulator of immune and oncogenic processes (Koskela et al, N Engl J Med, 2012). This breakthrough discovery gives insight to the pathogenesis of autoimmune disorders at large.

I present here a hypothesis that a strong antigen-induced proliferation is a mutational driver, which causes somatic mutations in lymphoid cells. When mutations hit key activating pathways, autoreactive cells acquire functional advantage and expand. The target antigen of the expanded clone determines the clinical characteristics of the autoimmune disease induced.

To prove this hypothesis, we will separate small lymphocyte clones from patients with autoimmune diseases and use sensitive next-generation sequencing methods to characterize the spectrum of somatic mutations in lymphoid cells. Further, we will study the function of mutated lymphocytes and examine the mechanisms of autocytotoxicity and end-organ/tissue damage. Finally, we aim to understand factors, which induce somatic mutations in lymphoid cells, such as the role of viral infections.

The results will transform our understanding of molecular pathogenesis of autoimmune diseases and lead to accurate diagnostics and discovery of novel drug targets.

More information about the project available here.

Targeting immune system in cancer patients/ Immunologisen puolustusjärjestelmän tutkiminen syöpäpotilailla

Luonnolliset tappajasolut (NK-solut) ovat T-solujen ohella tärkeä osa elimistön puolustusjärjestelmää ja suojelevat meitä syöpää vastaan. Valitettavasti sekä NK- että T-solut toimivat syöpäpotilailla usein huonosti, eikä useista yrityksistä huolimatta solujen normaalitoimintaa ole kyetty palauttamaan. Tämän projektin päämääränä on selvittää NK- ja T-solujen ja muiden puolustusjärjestelmän solujen luonnetta ja toimintaa syöpäpotilaissa (sekä verenkierrossa että itse syöpäkasvaimessa) sekä sitä, miten NK- ja T- solujen puolustusjärjestelmän solujen toimintaa voidaan muokata eri lääkkeillä. Pyrimme myös selvittä- mään, miten puolustusjärjestelmän solut vaikuttavat hoitovasteeseen. Lisäksi tutkimme syöpäsolujen pin- tarakennetta (ns. MHC I-peptidikompleksia) ja miten kehomme immuunijärjestelmä pystyy tunnistamaan syöpäsoluja näiden rakenteiden avulla. Tavoitteenamme on myös kartoittaa syöpäsolujen ja terveiden immuunisolujen perimää, jolloin voimme paremmin ymmärtää miten syöpäsolut karkaavat immuunijärjestelmän valvonnasta. Tuloksia voidaan hyödyntää syöpäpotilaiden hoidossa ja niiden avulla voidaan tulevaisuudessa kehittää tehokkaampia hoitomuotoja.