INAR wine & Science seminars continue

The first wine & science seminar of the season is given by Dr. Luis Alonso, who has worked with us over the last year or so and is a font of knowledge on all things remote sensing of vegetation. He will discuss leaf chlorophyl fluorescence and optical properties measurements.

Everyone is welcome to join the wine & science seminars in Viikki or though zoom!

Dr. Luis Alonso: Direct measurement of leaf chlorophyl fluorescence and optical properties

14.30 Friday 16th January 2024

Metsätieteiden talo, sali 332 and https://helsinki.zoom.us/j/69981525621?pwd=WCt1YUg2OGNPUjdVT3RCU2NTTDY4UT09

The fluorescence of chlorophyll in vegetation is a weak signal emitted between 650 and 850 nm that is mixed with the much more intense light reflected by the leaf, which is why active methods are commonly used (through the additional contribution of controlled artificial light) or using indirect measurements instead. So, the measurement is provided just in relative units in the first case, or the accuracy of the estimate in the second case is uncertain without proper direct validation.

The FluoWat device has been designed for the direct measurement of the fluorescence emission of leaves in vivo under natural conditions in the field with sunlight, in the lab with artificial light or a combination. It has been part of the activities supporting the preparation of ESA’s FLEX mission for the global monitoring of vegetation fluorescence.

The device consists of a small dark chamber implemented as a clip, so that the leaf can be housed inside without damaging it, with an opening to illuminate the sample by pointing at the sun (or any light source), and a sliding filter holder with a low-pass filter that blocks sunlight in the same spectral range as fluorescence is emitted while allowing the excitation light to pass through, then a spectroradiometer connected to the clip measures the fluorescence spectrum without interference from sunlight. In addition, it is possible to measure the leaf optical properties, i.e. reflectance and transmittance factors, and hence, the absorptance necessary to determine the absorbed photosynthetically active radiation (APAR), an essential parameter to properly interpret the fluorescence signal in relation to photosynthesis. Similarly, the reflectance and transmittance spectra in the visible range make it possible to determine the degree of photoprotection of the leaf and/or its chlorophyll content. A sensitivity analysis of different factors likely to affect the measurement has been carried out, such as the residual light that passes through the filter, or the effect of transients on fluorescence emission, among others. Processing methods have been developed to mitigate their effects on the fluorescence measurement, increasing the accuracy of the results. Finally, a series of experiments are presented in which the system is put to the test and that illustrate how, with the measurements provided by this new device, a better understanding of the dynamics of fluorescence emission while the vegetation adapts to different illumination changes, levels of stress and changing environmental conditions.
 

Upcoming wine & science seminars for this Spring:

March 22nd, Allan T. Souza: "The importance of best practices on data management, curation and publishing".

April 12th, Jussi Heinonsalo: "Highlights from the CarbonAction work"