How to acknowledge the HiPREP Core for nucleic acid or cell services?
"The authors would like to thank HiPREP Core at FIMM Technology Centre supported by HiLIFE and Biocenter Finland for [type of] services."
"[type of] service was performed at HiPREP Core in FIMM Technology Centre supported by HiLIFE and Biocenter Finland."
How to acknowledge the EV and HiPREP Core for EV services?
"We acknowledge services of the University of Helsinki: EV Core in Viikki for [type of] service and HiPREP Core in FIMM Technology Centre supported by HiLIFE and Biocenter Finland for [type of] service."
In case of EM services for EVs:
"We acknowledge services of the University of Helsinki: HiPREP Core in FIMM Technology Centre for electron microscopy work and Electron Microscopy Unit of the Institute of Biotechnology for providing the facilities supported by HiLIFE and Biocenter Finland.”
Including authors of the HiPREP Core or collaborating EV Core
EATRIS-Plus Multi-omics working group and Stakeholder, Alonso-Andres, P., Baldazzi, D., Chen, Q., Donner, K., Ghimire, B., Hannula, S., Lindgren, H., Mattila, P., Nazir, K., Nieminen, A.I., Palva, A., Puhka, M., Quintero, I., Scherer, A., Yadav, B. & Zizkovicova, P., 2025. Multi-omics quality assessment in personalized medicine through European infrastructure for translational medicine (EATRIS): An overview. Phenomics, 15, pp. 1–15.
Palviainen, M., Puutio, J., Østergaard, R.H., Eble, J.A., Maaninka, K., Butt, U., Ndika, J., Kari, O.K., Kamali-Moghaddam, M., Kjaer-Sorensen, K., Oxvig, C., Aransay, A.M., Falcon-Perez, J.M., Federico, A., Greco, D., Laitinen, S., Hayashi, Y. & Siljander, P.M.R., 2024. Beyond basic characterization and omics: Immunomodulatory roles of platelet-derived extracellular vesicles unveiled by functional testing. Journal of Extracellular Vesicles, 13, e12513. Available at: https://doi.org/10.1002/jev2.12513
Tavukcuoglu, Z., Butt, U., Faria, A.V.S., Oesterreicher, J., Holnthoner, W., Laitinen, S., Palviainen, M. & Siljander, P.M.R., 2024. Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes. Cell Communication and Signaling, 22, p.601. Available at: https://doi.org/10.1186/s12964-024-01973-4
Joo, S., Dhaygude, K., Westerberg, S., Krebs, R., Puhka, M., Holmström, E., Syrjälä, S., Nykänen, A.I. & Lemström, K., 2023. Transcriptomic landscape of circulating extracellular vesicles in heart transplant ischemia–reperfusion. Genes, 14(11), p.2101. Available at: https://doi.org/10.3390/genes14112101
Barreiro, K., Dwivedi, O.P., Rannikko, A., Holthöfer, H., Tuomi, T., Groop, P.H. & Puhka, M., 2023. Capturing the kidney transcriptome by urinary extracellular vesicles—from pre-analytical obstacles to biomarker research. Genes (Basel), 14(7), p.1415. https://doi.org/10.3390/genes14071415
Dwivedi, O.P., Barreiro, K., Kärjämäki, A., Valo, E., Giri, A.K., Prasad, R.B., Roy, R.D., Thorn, L.M., Rannikko, A., Holthöfer, H., Gooding, K.M., Sourbron, S., Delic, D., Gomez, M.F., iBEAt study, Groop, P.H., Tuomi, T., Forsblom, C., Groop, L. & Puhka, M., 2023. Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease. iScience, 26(5), p.106686. https://doi.org/10.1016/j.isci.2023.106686
Barreiro, K., Lay, A.C., Leparc, G., Tran, V.D.T., Rosler, M., Dayalan, L., Burdet, F., Ibberson, M., Coward, R.J.M., Huber, T.B., Krämer, B.K., Delic, D. & Holthofer, H., 2023. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. Journal of Extracellular Vesicles, 12(2), e12304. https://doi.org/10.1002/jev2.12304
Saraswat, M., Przybyla, B., Joenvaara, S., Tohmola, T., Strandin, T., Puhka, M., Jouppila, A., Lassila, R. & Renkonen, R., 2022. Urinary extracellular vesicles carry multiple activators and regulators of coagulation. Frontiers in Cell and Developmental Biology, 10, 967482. https://doi.org/10.3389/fcell.2022.967482
Puhka, M., Thierens, L., Nicorici, D., Forsman, T., Mirtti, T., af Hällström, T., Serkkola, E. & Rannikko, A., 2022. Exploration of extracellular vesicle miRNAs, targeted mRNAs and pathways in prostate cancer: Relation to disease status and progression. Cancers, 14(3), p.532. https://doi.org/10.3390/cancers14030532
Barreiro, K., Dwivedi, O.P., Valkonen, S., Groop, P.H., Tuomi, T., Holthofer, H., Rannikko, A., Yliperttula, M., Siljander, P., Laitinen, S., Serkkola, E., af Hällström, T., Forsblom, C., Groop, L. & Puhka, M., 2021. Urinary extracellular vesicles: Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research. Journal of Extracellular Vesicles, 10(12), e12158. https://doi.org/10.1002/jev2.12158
Barok, M., Puhka, M., Yazdi, N. & Joensuu, H., 2021. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy. Journal of Extracellular Vesicles, 10(4), e12070. https://doi.org/10.1002/jev2.12070
Vestad, B., Nyman, T.A., Hove-Skovsgaard, M., Stensland, M., Hoel, H., Trøseid, A.S., Aspelin, T., Aass, H.C.D., Puhka, M., Hov, J.R., Nielsen, S.D., Øvstebø, R. & Trøseid, M., 2021. Plasma extracellular vesicles in people living with HIV and type 2 diabetes are related to microbial translocation and cardiovascular risk. Scientific Reports, 11(1), p.21936. https://doi.org/10.1038/s41598-021-01334-y
Erdbrügger, U., Blijdorp, C.J., Bijnsdorp, I.V., Borràs, F.E., Burger, D., Bussolati, B., Byrd, J.B., Clayton, A., Dear, J.W., Falcón-Pérez, J.M., Grange, C., Hill, A.F., Holthöfer, H., Hoorn, E.J., Jenster, G., Jimenez, C.R., Junker, K., Klein, J., Knepper, M.A., Koritzinsky, E.H., Luther, J.M., Lenassi, M., Leivo, J., Mertens, I., Musante, L., Oeyen, E., Puhka, M., van Royen, M.E., Sánchez, C., Soekmadji, C., Thongboonkerd, V., van Steijn, V., Verhaegh, G., Webber, J.P., Witwer, K., Yuen, P.S.T., Zheng, L., Llorente, A. & Martens-Uzunova, E.S., 2021. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 10(7), e12093. https://doi.org/10.1002/jev2.12093
Nevalainen, T., Autio, A., Puhka, M., Jylhä, M. & Hurme, M., 2021. Composition of the whole transcriptome in the human plasma: Cellular source and modification by aging. Experimental Gerontology, 143, p.111119. https://doi.org/10.1016/j.exger.2020.111119
Kyykallio, H., Faria, A.V.S., Hartmann, R., Capra, J., Rilla, K. & Siljander, P.R., 2022. A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles. Journal of Extracellular Vesicles, 11(10), e12273. Erratum in: Journal of Extracellular Vesicles, 2023, 12(10), e12374. https://doi.org/10.1002/jev2.12273
Maaninka, K., Neuvonen, M., Kerkelä, E., Hyvärinen, K., Palviainen, M., Kamali-Moghaddam, M., Federico, A., Greco, D., Laitinen, S., Öörni, K. & Siljander, P.R., 2023. OxLDL sensitizes platelets for increased formation of extracellular vesicles capable of finetuning macrophage gene expression. European Journal of Cell Biology, 102(2), p.151311. https://doi.org/10.1016/j.ejcb.2023.151311
Customer scientific publications
Liukkonen, M., Heloterä, H., Siintamo, L., Ghimire, B., Mattila, P., Kivinen, N., Kostanek, J., Watala, C., Hytti, M., Hyttinen, J., Koskela, A., Blasiak, J. & Kaarniranta, K., 2024. Oxidative stress and inflammation-related mRNAs are elevated in serum of a Finnish wet AMD cohort. Investigative Ophthalmology & Visual Science, 65, 30. Available at: https://doi.org/10.1167/iovs.65.13.30
Kankaanpää, S., Väisänen, E., Goeminne, G., Soliymani, R., Desmet, S., Samoylenko, A., Vainio, S., Wingsle, G., Boerjan, W., Vanholme, R. & Kärkönen, A., 2024. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. Plant Physiology, 196(2), pp.788–809. Available at: https://doi.org/10.1093/plphys/kiae287
Arvola, O., Stigzelius, V., Ampuja, M. & Kivelä, R., 2025. Neural progenitor cell-derived exosomes in ischemia/reperfusion injury in cardiomyoblasts. BMC Neuroscience, 26(1), p.11. Available at: https://doi.org/10.1186/s12868-025-00931-1
Lautaoja-Kivipelto, J.H., Karvinen, S., Korhonen, T.M., O'Connell, T.M., Tiirola, M., Hulmi, J.J., Pekkala, S., 2024. Interaction of the C2C12 myotube contractions and glucose availability on transcriptome and extracellular vesicle microRNAs. American Journal of Physiology-Cell Physiology, 326(2), pp.C348-C361. Available at: https://doi.org/10.1152/ajpcell.00401.2023
Kankaanpää, S., Nurmi, M., Lampimäki, M., Leskinen, H., Nieminen, A., Samoylenko, A., Vainio, S.J., Mäkinen, S., Ahonen, L., Kangasluoma, J., Petäjä, T. & Viitala, S., 2024. Comparative analysis of the effects of different purification methods on the yield and purity of cow milk extracellular vesicles. Journal of Extracellular Biology, 3(4), e149. Available at: https://doi.org/10.1002/jex2.149
Kankaanpää, S., Väisänen, E., Goeminne, G., Soliymani, R., Desmet, S., Samoylenko, A., Vainio, S., Wingsle, G., Boerjan, W., Vanholme, R. & Kärkönen, A., 2024. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. Plant Physiology, 196(2), pp.788–809. Available at: https://doi.org/10.1093/plphys/kiae287
Joo, S., Dhaygude, K., Krebs, R., Holmström, E., Puhka, M., Laitinen, S., Dellgren, G., Magnusson, J., Holmberg, E.C., Svahn, J., Lund, T.K., Leuckfeld, I., Raivio, P., Helanterä, I., Åberg, F., Syrjälä, S.O., Nykänen, A.I. & Lemström, K.B., 2025. Extracellular vesicles in lung donor plasma: Potential indicators of donor organ quality. The Journal of Thoracic and Cardiovascular Surgery. Available at: https://doi.org/10.1016/j.jtcvs.2025.03.017 (in press).
Luoto, J.C., Coelho-Rato, L.S., Jungarå, C., Bengs, S.H., Roininen, J., Eriksson, J.E., Sistonen, L. & Henriksson, E., 2023. Cancer cell invasion alters the protein profile of extracellular vesicles. Journal of Extracellular Biology, 2, e124. Available at: https://doi.org/10.1002/jex2.124
Saari, H., Pusa, R., Marttila, H., Yliperttula, M. & Laitinen, S., 2023. Development of tandem cation exchange chromatography for high purity extracellular vesicle isolation: The effect of ligand steric availability. Journal of Chromatography A, 1707, p.464293. Available at: https://doi.org/10.1016/j.chroma.2023.464293
Kangas, P., Nyman, T.A., Metsähonkala, L., Burns, C., Tempest, R., Williams, T., Karttunen, J. & Jokinen, T.S., 2023. Towards optimised extracellular vesicle proteomics from cerebrospinal fluid. Scientific Reports, 13(1), p.9564. Available at: https://doi.org/10.1038/s41598-023-36706-z
Karvinen, S., Korhonen, T.M., Sievänen, T., Karppinen, J.E., Juppi, H.K., Jakoaho, V., Kujala, U.M., Laukkanen, J.A., Lehti, M. & Laakkonen, E.K., 2023. Extracellular vesicles and high-density lipoproteins: Exercise and oestrogen-responsive small RNA carriers. Journal of Extracellular Vesicles, 12(2), e12308. Available at: https://doi.org/10.1002/jev2.12308
Höglund, N., Koho, N., Rossi, H., Karttunen, J., Mustonen, A.M., Nieminen, P., Rilla, K., Oikari, S. & Mykkänen, A., 2022. Isolation of extracellular vesicles from the bronchoalveolar lavage fluid of healthy and asthmatic horses. Frontiers in Veterinary Science, 9, p.894189. Available at: https://doi.org/10.3389/fvets.2022.894189
Hiippala, K., Khan, I., Ronkainen, A., Boulund, F., Vähä-Mäkilä, H., Suutarinen, M., Seifert, M., Engstrand, L. & Satokari, R., 2022. Novel strain of Pseudoruminococcus massiliensis possesses traits important in gut adaptation and host-microbe interactions. Gut Microbes, 14(1), p.2013761. Available at: https://doi.org/10.1080/19490976.2021.2013761
Parvanian, S., Zha, H., Su, D., Xi, L., Jiu, Y., Chen, H., Eriksson, J.E. & Cheng, F., 2021. Exosomal vimentin from adipocyte progenitors protects fibroblasts against osmotic stress and inhibits apoptosis to enhance wound healing. International Journal of Molecular Sciences, 22(9), p.4678. Available at: https://doi.org/10.3390/ijms22094678
Dichlberger, A., Zhou, K., Bäck, N., Nyholm, T., Backman, A., Mattjus, P., Ikonen, E. & Blom, T., 2021. LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles. Biochimica et Biophysica Acta - Molecular Cell Biology of Lipids, 1866(2), p.158855. Available at: https://doi.org/10.1016/j.bbalip.2020.158855