Publications

List of our publications.
  1. H. Sandström, M. Rissanen, J. Rousu, P. Rinke, Data-Driven Compound Identification in Atmospheric Mass Spectrometry. Adv. Sci. 2023, 2306235. https://onlinelibrary.wiley.com/doi/10.1002/advs.202306235
  1. Alfaouri, D., Passananti, M., Kangasluoma, J., Zanca, T., Ahonen, L., Kubecka, J., Myllys, N., & Vehkamäki, H. (2022). A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 15(1), 11-19. https://doi.org/10.5194/amt-15-11-2022
  2. Amaladhasan, D. A., Heyn, C., Hoyle, C. R., El-Haddad, I., Elser, M., Pieber, S. M., Slowik, J. G., Amorim, A., Duplissy, J., Ehrhart, S., Makhmutov, V., Molteni, U., Rissanen, M., Stozhkov, Y., Wagner, R., Hansel, A., Kirkby, J., Donahue, N. M., Volkamer, R., ... Zuend, A. (2022). Modelling the gas-particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity. Atmospheric Chemistry and Physics, 22(1), 215-244. https://doi.org/10.5194/acp-22-215-2022
  3. Ameziane, M., Mansell, R., Havu, V., Rinke, P., & van Dijken, S. (2022). Lithium-Ion Battery Technology for Voltage Control of Perpendicular Magnetization. Advanced Functional Materials, 32(29), Article 2113118. Advance online publication. https://doi.org/10.1002/adfm.202113118
  4. Baryshnikov, G. V., Valiev, R. R., Valiulina, L. I., Kurtsevich, A. E., Kurten, T., Sundholm, D., Pittelkow, M., Zhang, J., & agren, H. (2022). Odd-Number Cyclo[n]Carbons Sustaining Alternating Aromaticity. Journal of Physical Chemistry A, 126(16), 2445-2452. https://doi.org/10.1021/acs.jpca.1c08507
  5. Beck, L. J., Schobesberger, S., Junninen, H., Lampilahti, J., Manninen, A., Dada, L., Leino, K., He, X-C., Pullinen, I., Quelever, L. L. J., Franck, A., Poutanen, P., Wimmer, D., Korhonen, F., Sipilä, M., Ehn, M., Worsnop, D. R., Kerminen, V-M., Petäjä, T., ... Duplissy, J. (2022). Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 22(13), 8547-8577. https://doi.org/10.5194/acp-22-8547-2022
  6. Beck, L. J., Schobesberger, S., Sipilä, M., Kerminen, V-M., & Kulmala, M. (2022). Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer. Atmospheric Measurement Techniques, 15(6), 1957-1965. https://doi.org/10.5194/amt-15-1957-2022
  7. Bianco, A., Neefjes, I., Alfaouri, D., Vehkamäki, H., Kurten, T., Ahonen, L., Passananti, M., & Kangasluoma, J. (2022). Separation of isomers using a differential mobility analyser (DMA): Comparison of experimental vs modelled ion mobility. Talanta, 243, Article 123339. https://doi.org/10.1016/j.talanta.2022.123339
  8. Björklund, A., Henelius, A., Oikarinen, E., Kallonen, K., & Puolamäki, K. (2022). Robust regression via error tolerance. Data Mining and Knowledge Discovery, 36(2), 781–810. https://doi.org/10.1007/s10618-022-00819-2
  9. Boy, M., Zhou, P., Kurten, T., Chen, D., Xavier, C., Clusius, P., Roldin, P., Baykara, M., Pichelstorfer, L., Foreback, B., Bäck, J., Petäjä, T., Makkonen, R., Kerminen, V-M., Pihlatie, M., Aalto, J., & Kulmala, M. (2022). Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates. npj climate and atmospheric science, 5(1), Article 72. https://doi.org/10.1038/s41612-022-00292-0
  10. Cai, R., & Kangasluoma, J. (2022). Response to the comments on "The proper view of cluster free energy in nucleation theories" by Roope Halonen. Aerosol Science and Technology, 56(12), 1071-1074. https://doi.org/10.1080/02786826.2022.2130028
  11. Cai, R., & Kangasluoma, J. (2022). The proper view of cluster free energy in nucleation theories. Aerosol Science and Technology, 56(8), 757-766. https://doi.org/10.1080/02786826.2022.2075250
  12. Cai, R., Deng, C., Stolzenburg, D., Li, C., Guo, J., Kerminen, V-M., Jiang, J., Kulmala, M., & Kangasluoma, J. (2022). Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm. Atmospheric Chemistry and Physics, 22(22), 14571-14587. https://doi.org/10.5194/acp-22-14571-2022
  13. Cai, R., Häkkinen, E., Yan, C., Jiang, J., Kulmala, M., & Kangasluoma, J. (2022). The effectiveness of the coagulation sink of 3–10 nm atmospheric particles. Atmospheric Chemistry and Physics, 22(17), 11529-11541. https://doi.org/10.5194/acp-22-11529-2022
  14. Cai, R., Yin, R., Yan, C., Yang, D., Deng, C., Dada, L., Kangasluoma, J., Kontkanen, J., Halonen, R., Ma, Y., Zhang, X., Paasonen, P., Petäjä, T., Kerminen, V-M., Liu, Y., Bianchi, F., Zheng, J., Wang, L., Hao, J., ... Jiang, J. (2022). The missing base molecules in atmospheric acid-base nucleation. National science review, 9(10). https://doi.org/10.1093/nsr/nwac137
  15. Carracedo, L. G., Lehtipalo, K., Ahonen, L. R., Sarnela, N., Holm, S., Kangasluoma, J., Kulmala, M., Winkler, P. M., & Stolzenburg, D. (2022). On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments. Atmospheric Chemistry and Physics, 22(19), 13153-13166. https://doi.org/10.5194/acp-22-13153-2022
  16. D'Ambro, E. L., Hyttinen, N., Moller, K. H., Iyer, S., Otkjaer, R., Bell, D. M., Liu, J., Lopez-Hilfiker, F. D., Schobesberger, S., Shilling, J. E., Zelenyuk, A., Kjaergaard, H. G., Thornton, J. A., & Kurten, T. (2022). Pathways to Highly Oxidized Products in the Delta 3-Carene + OH System. Environmental Science & Technology, 56(4), 2213-2224. https://doi.org/10.1021/acs.est.1c06949
  17. Daub, C. D., Valiev, R., Salo, V-T., Zakai, I., Gerber, R. B., & Kurten, T. (2022). Computed Pre-reactive Complex Association Lifetimes Explain Trends in Experimental Reaction Rates for Peroxy Radical Recombinations. ACS Earth and Space Chemistry, 6, 2446-2452. https://doi.org/10.1021/acsearthspacechem.2c00159
  18. Daub, C. D., Zakai, I., Valiev, R., Salo, V-T., Gerber, R. B., & Kurten, T. (2022). Energy transfer, pre-reactive complex formation and recombination reactions during the collision of peroxy radicals. Physical Chemistry Chemical Physics, 24(17), 10033-10043. https://doi.org/10.1039/d1cp04720e
  19. Deng, C., Li, Y., Yan, C., Wu, J., Cai, R., Wang, D., Liu, Y., Kangasluoma, J., Kerminen, V-M., Kulmala, M., & Jiang, J. (2022). Measurement report: Size distributions of urban aerosols down to 1 nm from long-term measurements. Atmospheric Chemistry and Physics, 22(20), 13569-13580. https://doi.org/10.5194/acp-22-13569-2022
  20. Du, W., Cai, J., Zheng, F., Yan, C., Zhou, Y., Guo, Y., Chu, B., Yao, L., Heikkinen, L. M., Fan, X., Wang, Y., Cai, R., Hakala, S., Chan, T., Kontkanen, J., Tuovinen, S., Petäjä, T., Kangasluoma, J., Bianchi, F., ... Kulmala, M. (2022). Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science & Technology Letters, 9(5), 375-382. https://doi.org/10.1021/acs.estlett.2c00159
  21. Du, W., Wang, W., Liu, R., Wang, Y., Zhang, Y., Zhao, J., Dada, L., Xie, C., Wang, Q., Xu, W., Zhou, W., Zhang, F., Li, Z., Fu, P., Li, J., Kangasluoma, J., Wang, Z., Ge, M., Kulmala, M., & Sun, Y. (2022). Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 802, Article 149695. https://doi.org/10.1016/j.scitotenv.2021.149695
  22. Dvorak, M., Baumeier, B., Golze, D., Leppert, L., & Rinke, P. (2022). Editorial: Many-Body Green’s Functions and the Bethe-Salpeter Equation in Chemistry: From Single Molecules to Complex Systems. Frontiers in Chemistry, 10, 1-2. Article 866492. https://doi.org/10.3389/fchem.2022.866492
  23. Feng, Z., Liu, Y., Zheng, F., Yan, C., Fu, P., Zhang, Y., Lian, C., Wang, W., Cai, J., Du, W., Chu, B., Wang, Y., Kangasluoma, J., Bianchi, F., Petäjä, T., & Kulmala, M. (2022). Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmospheric Environment, 273, Article 118971. https://doi.org/10.1016/j.atmosenv.2022.118971
  24. Feng, Z., Zheng, F., Yan, C., Fu, P., Zhang, Y., Lin, Z., Cai, J., Du, W., Wang, Y., Kangasluoma, J., Bianchi, F., Petäjä, T., Wang, Y., Kulmala, M., & Liu, Y. (2022). The impact of ammonium on the distillation of organic carbon in PM2.5. Science of the Total Environment, 803, Article 150012. https://doi.org/10.1016/j.scitotenv.2021.150012
  25. Fernandez de la Mora, J., Kangasluoma, J., & Attoui, M. (2022). Size resolution of the Airmodus A10 particle size magnifier with purified clusters. Journal of Aerosol Science, 160, Article 105916. https://doi.org/10.1016/j.jaerosci.2021.105916
  26. Finkenzeller, H., Iyer, S., He, X-C., Simon, M., Koenig, T. K., Lee, C. F., Valiev, R., Hofbauer, V., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bell, D. M., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dada, L., Duplissy, J., ... Volkamer, R. (2023). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 15(1), 129–135. https://doi.org/10.1038/s41557-022-01067-z
  27. Fomete, S. K. W., Johnson, J. S., Myllys, N., Neefjes, I., Reischl, B., & Jen, C. N. (2022). Ion–Molecule Rate Constants for Reactions of Sulfuric Acid with Acetate and Nitrate Ions. Journal of Physical Chemistry A, 126(44), 8240-8248. https://doi.org/10.1021/acs.jpca.2c02072
  28. Foreback, B., Dada, L., Daellenbach, K. R., Yan, C., Wang, L., Chu, B., Zhou, Y., Kokkonen, T., Kurppa, M., Pileci, R. E., Wang, Y., Chan, T., Kangasluoma, J., Zhuohui, L., Guo, Y., Li, C., Baalbaki, R., Kujansuu, J., Fan, X., ... Paasonen, P. (2022). Measurement report: A multi-year study on the impacts of Chinese New Year celebrations on air quality in Beijing, China. Atmospheric Chemistry and Physics, 22(17), 11089-11104. https://doi.org/10.5194/acp-22-11089-2022
  29. Fredrickson C. D., Palm B. B., Lee B. H., Zhang X., Orlando J. J., Tyndall G. S., Garofalo L. A., Pothier M. A., Farmer D. K., Decker Z. C. J., Robinson M. A., Brown S. S., Murphy S. M., Shen Y., Sullivan A. P., Schobesberger S., Thornton J. A. (2022) Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption ACS Earth Space Chem., 6, 1067-1079, doi:10.1021/acsearthspacechem.2c00007.
  30. Golze, D., Hirvensalo, M., Hernández-León, P., Aarva, A., Etula, J., Susi, T., Rinke, P., Laurila, T., & Caro, M. A.(2022). Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW. Chemistry of Materials, 34(14), 6240−6254. https://doi.org/10.1021/acs.chemmater.1c04279
  31. Guo, X., Fang, L., Xu, Y., Duan, W., Rinke, P., Todorović, M., & Chen, X. (2022). Molecular Conformer Search with Low-Energy Latent Space. Journal of Chemical Theory and Computation, 18(7), 4574−4585. https://doi.org/10.1021/acs.jctc.2c00290
  32. Hakala, S., Vakkari, V., Bianchi, F., Dada, L., Deng, C., Dällenbach, K., Fu, Y., Jiang, J., Kangasluoma, J., Kujansuu, J., Liu, Y., Petäjä, T., Wang, L., Yan, C., Kulmala, M., & Paasonen, P. (2022). Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental science: Atmospheres, 2(2), 146-164. https://doi.org/10.1039/d1ea00089f
  33. Heitto, A., Lehtinen, K., Petäjä, T., Lopez-Hilfiker, F., Thornton, J. A., Kulmala, M., & Yli-Juuti, T. (2022). Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 22(1), 155-171. https://doi.org/10.5194/acp-22-155-2022
  34. Hyttinen, N., Pullinen, I., Nissinen, A., Schobesberger, S., Virtanen, A., & Yli-Juuti, T. (2022). Comparison of saturation vapor pressures of <i>α</i>-pinene + O<sub>3</sub> oxidation products derived from COSMO-RS computations and thermal desorption experiments. Atmospheric Chemistry and Physics, 22(2), 1195–1208. https://doi.org/10.5194/acp-22-1195-2022
  35. Ibragimova, R., Rinke, P., & Komsa, H. P. (2022). Native Vacancy Defects in MXenes at Etching Conditions. Chemistry of Materials, 34(7), 2896-2906. https://doi.org/10.1021/acs.chemmater.1c03179
  36. Isokääntä, S., Mikkonen, S., Laurikainen, M., Buchholz, A., Schobesberger, S., Blande, J. D., Nieminen, T., Ylivinkka, I., Bäck, J., Petäjä, T., Kulmala, M., & Yli-Juuti, T. (2022). Multivariate model-based investigation of the temperature dependence of ozone concentration in Finnish boreal forest. Atmospheric Environment, 289, Article 119315. https://doi.org/10.1016/j.atmosenv.2022.119315
  37. Jin, S. A., Kämäräinen, T., Rinke, P., Rojas, O. J., & Todorovic, M. (2022). Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models. MRS Bulletin, 47(1), 29-37. Advance online publication. https://doi.org/10.1557/s43577-021-00183-4
  38. Jokinen, T., Lehtipalo, K., Thakur, R. C., Ylivinkka, I., Neitola, K., Sarnela, N., Laitinen, T., Kulmala, M., Petäjä, T., & Sipilä, M. (2022). Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 22(4), 2237-2254. https://doi.org/10.5194/acp-22-2237-2022
  39. Junninen, H., Ahonen, L., Bianchi, F., Quelever, L., Schallhart, S., Dada, L., Manninen, H. E., Leino, K., Lampilahti, J., Mazon, S. B., Rantala, P., Räty, M., Kontkanen, J., Negri, S., Aliaga, D., Garmash, O., Alekseychik, P., Lipp, H., Tamme, K., ... Kulmala, M. (2022). Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications earth & environment, 3(1), Article 93. https://doi.org/10.1038/s43247-022-00406-9
  40. Järvi, J., Todorović, M., & Rinke, P. (2022). Efficient modeling of organic adsorbates on oxygen-intercalated graphene on Ir(111). Physical Review B, 105(19), 1-10. Article 195304. https://doi.org/10.1103/PhysRevB.105.195304
  41. Kangasluoma, J., Mikkilä, J., Hemmilä, V., Kausiala, O., Hakala, J., Iakovleva, E., Juuti, P., Sipilä, M., Junninen, H., Jost, H. J., & Shcherbinin, A. (2022). Atmospheric pressure thermal desorption chemical ionization mass spectrometry for ultra-sensitive explosive detection. Talanta, 249, Article 123653. https://doi.org/10.1016/j.talanta.2022.123653
  42. Kulik, H. J., Hammerschmidt, T., Schmidt, J., Botti, S., Marques, M. A. L., Boley, M., Scheffler, M., Todorović, M., Rinke, P., Oses, C., Smolyanyuk, A., Curtarolo, S., Tkatchenko, A., Bartók, A. P., Manzhos, S., Ihara, M., Carrington, T., Behler, J., Isayev, O., ... Ghiringhelli, L. M. (2022). Roadmap on Machine learning in electronic structure. Electronic Structure, 4(2), 1-60. Article 023004. https://doi.org/10.1088/2516-1075/ac572f
  43. Laakso, J., Todorovic, M., Li, J., Zhang, G-X., & Rinke, P. (2022). Compositional engineering of perovskites with machine learning. Physical Review Materials, 6(11), 1-10. Article 113801. https://doi.org/10.1103/PhysRevMaterials.6.113801
  44. Li, H., Almeida, T. G., Luo, Y., Zhao, J., Palm, B. B., Daub, C. D., Huang, W., Mohr, C., Krechmer, J. E., Kurten, T., & Ehn, M. (2022). Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides. Atmospheric Measurement Techniques, 15(6), 1811-1827. https://doi.org/10.5194/amt-15-1811-2022
  45. Li, J., Jin, Y., Rinke, P., Yang, W., & Golze, D. (2022). Benchmark of GW Methods for Core-Level Binding Energies. Journal of Chemical Theory and Computation, 18(12), 7570-7585. Advance online publication. https://doi.org/10.1021/acs.jctc.2c00617
  46. Lipponen, A., Reinvall, J., Väisänen, A., Taskinen, H., Lähivaara, T., Sogacheva, L., Kolmonen, P., Lehtinen, K., Arola, A., and Kolehmainen, V.: Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product, Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, 2022.
  47. Löfgren, J., Tarasov, D., Koitto, T., Rinke, P., Balakshin, M., & Todorović, M. (2022). Machine Learning Optimization of Lignin Properties in Green Biorefineries. ACS Sustainable Chemistry and Engineering, 10(29), 9469-9479. https://doi.org/10.1021/acssuschemeng.2c01895
  48. Ma, L., Zhang, Y., Lin, Z., Zhou, Y., Yan, C., Zhang, Y., Zhou, W., Ma, W., Hua, C., Li, X., Deng, C., Qi, Y., Dada, L., Li, H., Bianchi, F., Petäjä, T., Kangasluoma, J., Jiang, J., Liu, S., ... Liu, Y. (2022). Deposition potential of 0.003-10 mu m ambient particles in the humidified human respiratory tract: Contribution of new particle formation events in Beijing. Ecotoxicology and Environmental Safety, 243, Article 114023. https://doi.org/10.1016/j.ecoenv.2022.114023
  49. Mäkelä, J. S., Melkas, L., Mammarella, I., Nieminen, T., Halasinamara Chandramouli, S., Savvides, R., & Puolamäki, K. (2022). Technical note: Incorporating expert domain knowledge into causal structure discovery workflows. Biogeosciences, 19(8), 2095-2099. https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-2021-231
  50. Neefjes, I., Halonen, R., Vehkamäki, H., & Reischl, B. (2022). Modeling approaches for atmospheric ion-dipole collisions: all-atom trajectory simulations and central field methods. Atmospheric Chemistry and Physics, 22(17), 11155-11172. https://doi.org/10.5194/acp-22-11155-2022
  51. Olin, M., Okuljar, M., Rissanen, M., Kalliokoski, J., Shen, J., Dada, L., Lampimäki, M., Wu, Y., Lohila, A. K., Duplissy, J., Sipilä, M., Petäjä, T., Kulmala, M., & Dal Maso, M. (2022). Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra. Atmospheric Chemistry and Physics, 22(12), 8097–8115. https://doi.org/10.5194/acp-22-8097-2022
  52. Pekkanen, T. T., Valkai, L., Joshi, S. P., Lendvay, G., Heinonen, P., Timonen, R. S., & Eskola, A. J. (2022). An experimental and computational study of the reaction between pent-3-en-2-yl radicals and oxygen molecules: switching from pure stabilisation to pure decomposition with increasing temperature. Faraday Discussions, 238(0), 619-644. https://doi.org/10.1039/d2fd00031h
  53. Pekkanen, T., Timonen, R., Robertson , S., Lendvay, G., Joshi, S. P., Reijonen, T. T., & Eskola, A. J. (2022). An Experimental and Computational Study of the Reaction Between 2-Methylallyl Radicals and Oxygen Molecules: Optimizing Master Equation Parameters with Trace Fitting. Physical Chemistry Chemical Physics, 24(8), 4729-4742. https://doi.org/10.1039/d1cp05591g
  54. Peltola, J., Seal, P., Vuorio, N., Heinonen, P., & Eskola, A. (2022). Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl- substituted Criegee intermediate (CH3)2COO using a new photolytic precursor. Physical Chemistry Chemical Physics, 24(8), 5211-5219. https://doi.org/10.1039/D1CP02270A, https://doi.org/10.1039/d1cp02270a
  55. Petäjä, T., Tabakova, K., Manninen, A., Ezhova, E., O'Connor, E., Moisseev, D., Sinclair, V., Backman, J., Levula, J., Luoma, K., Virkkula, A., Paramonov, M., Räty, M., Äijälä, M., Heikkinen, L., Ehn, M., Sipilä, M., Yli-Juuti, T., Virtanen, A., ... Kerminen, V-M. (2022). Influence of biogenic emissions from boreal forests on aerosol-cloud interactions. Nature Geoscience, 15(1), 42-+. https://doi.org/10.1038/s41561-021-00876-0
  56. Popolan-Vaida, D. M., Eskola, A. J., Rotavera, B., Lockyear, J. F., Wang, Z., Sarathy, S. M., Caravan, R. L., Zador, J., Sheps, L., Lucassen, A., Moshammer, K., Dagaut, P., Osborn, D. L., Hansen, N., Leone, S. R., & Taatjes, C. A. (2022). Formation of Organic Acids and Carbonyl Compounds in n-Butane Oxidation via gamma-Ketohydroperoxide Decomposition. Angewandte Chemie (International Edition), 61(42), Article 202209168. https://doi.org/10.1002/anie.202209168
  57. Quelever, L. L. J., Dada, L., Asmi, E., Lampilahti, J., Chan, T., Ferrara, J. E., Copes, G. E., Perez-Fogwill, G., Barreira, L., Aurela, M., Worsnop, D. R., Jokinen, T., & Sipilä, M. (2022). Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula. Atmospheric Chemistry and Physics, 22(12), 8417-8437. https://doi.org/10.5194/acp-22-8417-2022
  58. Räsänen, T., Reiman, A., Puolamäki, K., Oikarinen, E., & Lantto, E. (2022). Finding statistically significant high accident counts in exploration of occupational accident data. Journal of Safety Research, 82, 28-37. https://doi.org/10.1016/j.jsr.2022.04.003
  59. Rörup, B., Scholz, W., Dada, L., Leiminger, M., Baalbaki, R., Hansel, A., Kangasluoma, J., Manninen, H. E., Steiner, G., Vanhanen, J., Kulmala, M., & Lehtipalo, K. (2022). Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions. Journal of Aerosol Science161, Article 105945. https://doi.org/10.1016/j.jaerosci.2021.105945
  60. Salo, V-T., Valiev, R., Lehtola, S., & Kurten, T. (2022). Gas-Phase Peroxyl Radical Recombination Reactions: A Computational Study of Formation and Decomposition of Tetroxides. Journal of Physical Chemistry A, 126(25), 4046-4056. https://doi.org/10.1021/acs.jpca.2c01321
  61. Schattauer, C., Todorović, M., Ghosh, K., Rinke, P., & Libisch, F. (2022). Machine learning sparse tight-binding parameters for defects. npj Computational Materials, 8(1), 1-11. Article 116. https://doi.org/10.1038/s41524-022-00791-x
  62. Shen, J., Scholz, W., He, X-C., Zhou, P., Marie, G., Wang, M., Marten, R., Surdu, M., Rörup, B., Baalbaki, R., Amorim, A., Ataei, F., Bell, D. M., Bertozzi, B., Brasseur, Z., Caudillo, L., Chen, D., Chu, B., Dada, L., ... Worsnop, D. R. (2022). High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures. Environmental Science & Technology, 56(19), 13931–13944. https://doi.org/10.1021/acs.est.2c05154
  63. Skyttä, A., Gao, J., Cai, R., Ehn, M., Ahonen, L. R., Kurten, T., Wang, Z., Rissanen, M. P., & Kangasluoma, J. (2022). Isomer-Resolved Mobility-Mass Analysis of alpha-Pinene Ozonolysis Products. Journal of Physical Chemistry A, 126(30), 5040-5049. https://doi.org/10.1021/acs.jpca.2c03366
  64. Stolzenburg, D., Ozon, M., Kulmala, M., Lehtinen, K. E. J., Lehtipalo, K., & Kangasluoma, J. (2022). Combining instrument inversions for sub-10 nm aerosol number size-distribution measurements. Journal of Aerosol Science, 159, Article 105862. https://doi.org/10.1016/j.jaerosci.2021.105862
  65. Thakur, R. C., Dada, L., Beck, L. J., Quelever, L. L. J., Chan, T., Marbouti, M., He, X-C., Xavier, C., Sulo, J., Lampilahti, J., Lampimäki, M., Tham, Y. J., Sarnela, N., Lehtipalo, K., Norkko, A., Kulmala, M., Sipilä, M., & Jokinen, T. (2022). An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 22(9), 6365-6391. https://doi.org/10.5194/acp-22-6365-2022
  66. the MESSy Consortium, Wang, M., Xiao, M., Rörup, B., Shen, J., Dada, L., Baalbaki, R., Manninen, H. E., Brasseur, Z., Duplissy, J., Korhonen, K., Lehtipalo, K., Onnela, A., Petäjä, T., Piedehierro, A. A., Schobesberger, S., Welti, A., Wu, Y., Sipilä, M., ... Worsnop, D. R. (2022). Synergistic HNO3-H2SO4-NH3 upper tropospheric particle formation. Nature, 605(7910), 483-+. https://doi.org/10.1038/s41586-022-04605-4
  67. Tikkanen, V., Reischl, B., Vehkamäki, H., & Halonen, R. (2022). Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters. Proceedings of the National Academy of Sciences of the United States of America, 119(28), Article e2201955119. https://doi.org/10.1073/pnas.2201955119
  68. Vahabpour Roudsari, G., Pakarinen, O. H., Reischl, B., & Vehkamäki, H. (2022). Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries. Atmospheric Chemistry and Physics, 22(15), 10099-10114. https://doi.org/10.5194/acp-22-10099-2022
  69. Valiev, R., Kurten, T., Valiulina, L. I., Ketkov, S. Y., Cherepanov, V. N., Dimitrova, M., & Sundholm, D. (2022). Magnetically induced ring currents in metallocenothiaporphyrins. Physical Chemistry Chemical Physics, 24(3), 1666-1674. https://doi.org/10.1039/D1CP04779E
  70. Wang, Y., Clusius, P., Yan, C., Dällenbach, K., Yin, R., Wang, M., He, X-C., Chu, B., Lu, Y., Dada, L., Kangasluoma, J., Rantala, P., Deng, C., Lin, Z., Wang, W., Yao, L., Fan, X., Du, W., Cai, J., ... Kulmala, M. (2022). Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 56(2), 770-778. https://doi.org/10.1021/acs.est.1c05191
  71. Xavier, C., Baykara, M., Wollesen de Jonge, R., Altstädter, B., Clusius, P. S., Vakkari, V., Thakur, R., Beck, L., Becagli, S., Severi, M., Traversi, R., Krejci, R., Tunved, P., Mazzola, M., Wehner, B., Sipilä, M., Kulmala, M., Boy, M., & Pontus, R. (2022). Secondary aerosol formation in marine Arctic environments: a model measurement comparison at Ny-Ålesund. Atmospheric Chemistry and Physics, 22(15), 10023–10043. https://doi.org/10.5194/acp-22-10023-2022
  72. Yan, C., Shen, Y., Stolzenburg, D., Dada, L., Qi, X., Hakala, S., Sundström, A-M., Guo, Y., Lipponen, A., Kokkonen, T., Kontkanen, J., Cai, R., Cai, J., Chan, T., Chen, L., Chu, B., Deng, C., Du, W., Fan, X., ... Kulmala, M. (2022). The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing. Atmospheric Chemistry and Physics, 22(18), 12207-12220. https://doi.org/10.5194/acp-22-12207-2022
  73. Yang, H., Ding, D., Skyttä, A., Cai, R., Kulmala, M., & Kangasluoma, J. (2022). Electrical Mobility as an Indicator for Flexibly Deducing the Kinetics of Nanoparticle Evaporation. Journal of Physical Chemistry C, 126(20), 8794–8800. https://doi.org/10.1021/acs.jpcc.2c02858
  74. Yang, H., Song, G., & Hogan Jr., C. J. (2022). A molecular dynamics study of collisional heat transfer to nanoclusters in the gas phase. Journal of Aerosol Science159, Article 105891. https://doi.org/10.1016/j.jaerosci.2021.105891
  75. Zhang, R., Xie, H-B., Ma, F., Chen, J., Iyer, S., Simon, M., Heinritzi, M., Shen, J., Tham, Y. J., Kurten, T., Worsnop, D. R., Kirkby, J., Curtius, J., Sipilä, M., Kulmala, M., & He, X-C. (2022). Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation. Environmental Science & Technology, 56(19), 14166–14177. https://doi.org/10.1021/acs.est.2c04328