Publications

List of our publications.
  1. Klami A, Damoulas T, Engkvist O, Rinke P, Kaski S. Virtual laboratories: transforming research with AI. Data-Centric Engineering. 2024;5:e19. doi:10.1017/dce.2024.15
  1. Barua, S., Iyer, S., Kumar, A., Seal, P., & Rissanen, M. (2023). An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation. Atmospheric Chemistry and Physics23(18), 10517-10532. https://doi.org/10.5194/acp-23-10517-2023
  2. Besel, V., Todorović, M., Kurtén, T., Rinke, P., & Vehkamäki, H. (2023). Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules. Scientific Data10(1), 1-11. Article 450. https://doi.org/10.1038/s41597-023-02366-x
  3. Björklund, A., Henelius, A., Oikarinen, E., Kallonen, K., & Puolamäki, K. (2023). Explaining any black box model using real data. Frontiers in computer science5, Article 1143904. https://doi.org/10.3389/fcomp.2023.1143904
  4. Björklund, A., Mäkelä, J. S., & Puolamäki, K. (2023). SLISEMAP: Combining Supervised Dimensionality Reduction with Local Explanations. In Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2022 (pp. 612–616). (Lecture Notes in Computer Science; Vol. 13718). Springer. https://doi.org/10.1007/978-3-031-26422-1_41
  5. Björklund, A., Mäkelä, J., & Puolamäki, K. (2023). SLISEMAP: supervised dimensionality reduction through local explanations. Machine Learning112, 1-43. https://doi.org/10.1007/s10994-022-06261-1
  6. Boyer, M., Aliaga, D., Pernov, J. B., Angot, H., Quelever, L. L. J., Dada, L., Heutte, B., Dall'Osto, M., Beddows, D. C. S., Brasseur, Z., Beck, I., Bucci, S., Duetsch, M., Stohl, A., Laurila, T., Asmi, E., Massling, A., Thomas, D. C., Nojgaard, J. K., ... Jokinen, T. (2023). A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinarydrifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Atmospheric Chemistry and Physics23(1), 389-415. https://doi.org/10.5194/acp-23-389-2023
  7. Chamba, G., Rissanen, M., Barthelmes, T., Saiz-Lopez, A., Rose, C., Iyer, S., Saint-Macary, A., Rocco, M., Safi, K. A., Deppeler, S., Barr, N., Harvey, M. J., Engel, A., Dunne, E., Law, C. S., & Sellegri, K. (2023). Evidence of nitrate-based nighttime atmospheric nucleation driven by marine microorganisms in the South Pacific. Proceedings of the National Academy of Sciences of the United States of America120(48), Article e2308696120. https://doi.org/10.1073/pnas.2308696120
  8. Dada, L., Stolzenburg, D., Simon, M., Fischer, L., Heinritzi, M., Wang, M., Xiao, M., Vogel, A. L., Ahonen, L., Amorim, A., Baalbaki, R., Baccarini, A., Baltensperger, U., Bianchi, F., Dällenbach, K., DeVivo, J., Dias, A., Dommen, J., Duplissy, J., ... Kulmala, M. (2023). Role of sesquiterpenes in biogenic new particle formation. Science Advances9(36), Article eadi5297. https://doi.org/10.1126/sciadv.adi5297
  9. Fang, L., Guo, X., Todorovic, M., Rinke, P., & Chen, X. (2023). Exploring the Conformers of an Organic Molecule on a Metal Cluster with Bayesian Optimization. JOURNAL OF CHEMICAL INFORMATION AND MODELING63(3), 745-752. https://doi.org/10.1021/acs.jcim.2c01120
  10. Finkenzeller, H., Iyer, S., He, X.-C., Simon, M., Koenig, T. K., Lee, C. F., Valiev, R., Hofbauer, V., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bell, D. M., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dada, L., Duplissy, J., ... Volkamer, R. (2023). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry15(1), 129–135. https://doi.org/10.1038/s41557-022-01067-z
  11. Franzon, L. (2023). Simple Physical Model for the Estimation of Irreversible Dissociation Rates for Bimolecular Complexes. Journal of Physical Chemistry A127(28), 5956-5966. https://doi.org/10.1021/acs.jpca.3c01890
  12. Franzon, L., Peltola, J., Valiev, R., Vuorio, N., Kurten, T., & Eskola, A. (2023). An Experimental and Master Equation Investigation of Kinetics of the CH2OO+RCN Reactions (R = H, CH3, C2H5) and Their Atmospheric Relevance. Journal of Physical Chemistry A127(2), 477-488. https://doi.org/10.1021/acs.jpca.2c07073
  13. Gao, J., Xu, Z., Cai, R., Skyttä, A., Nie, W., Gong, X., Zhu, L., Cui, S., Pei, X., Kuang, B., Kangasluoma, J., & Wang, Z. (2023). Molecular identification of organic acid molecules from α-pinene ozonolysis. Atmospheric Environment312, Article 120052. https://doi.org/10.1016/j.atmosenv.2023.120052
  14. H. Sandström, M. Rissanen, J. Rousu, P. Rinke, Data-Driven Compound Identification in Atmospheric Mass Spectrometry. Adv. Sci. 2023, 2306235. https://onlinelibrary.wiley.com/doi/10.1002/advs.202306235
  15. Hasan, G., Salo, V.-T., Almeida, T. G., Valiev, R. R., & Kurten, T. (2023). Computational Investigation of Substituent Effects on the Alcohol plus Carbonyl Channel of Peroxy Radical Self- and Cross-Reactions. Journal of Physical Chemistry A127, 1686-1696. https://doi.org/10.1021/acs.jpca.2c08927
  16. He, X. C., Shen, J., Iyer, S., Juuti, P., Zhang, J., Koirala, M., Kytökari, M. M., Worsnop, D. R., Rissanen, M., Kulmala, M., Maier, N. M., Mikkilä, J., Sipilä, M., & Kangasluoma, J. (2023). Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods. Atmospheric Measurement Techniques16(19), 4461-4487. https://doi.org/10.5194/amt-16-4461-2023
  17. He, X.-C., Simon, M., Iyer, S., Xie, H.-B., Rörup, B., Shen, J., Finkenzeller, H., Stolzenburg, D., Zhang, R., Baccarini, A., Tham, Y. J., Wang, M., Amanatidis, S., Piedehierro, A. A., Amorim, A., Baalbaki, R., Brasseur, Z., Caudillo, L., Chu, B., ... Kulmala, M. (2023). Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere. Science382(6676), 1308-1314. https://doi.org/10.1126/science.adh2526
  18. Heutte, B., Bergner, N., Beck, I., Angot, H., Dada, L., Quelever, L. L. J., Laurila, T., Boyer, M., Brasseur, Z., Daellenbach, K. R., Henning, S., Kuang, C., Kulmala, M., Lampilahti, J., Lampimäki, M., Petäjä, T., Shupe, M. D., Sipilä, M., Uin, J., ... Schmale, J. (2023). Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC. Scientific data 10(1), Article 690. https://doi.org/10.1038/s41597-023-02586-1
  19. Häkkinen, E., Zhao, J., Graeffe, F., Faure, N., Krechmer, J. E., Worsnop, D., Timonen, H., Ehn, M., & Kangasluoma, J. (2023). Online measurement of highly oxygenated compounds from organic aerosol. Atmospheric Measurement Techniques16(6), 1705-1721. https://doi.org/10.5194/amt-16-1705-2023
  20. Ibrayev, N. K., Seliverstova, E. V., Valiev, R. R., Kanapina, A. E., Ishchenko, A. A., Kulinich, A. V., Kurten, T., & Sundholm, D. (2023). Influence of plasmons on the luminescence properties of solvatochromic merocyanine dyes with different solvatochromism. Physical Chemistry Chemical Physics25, 22851-22861. https://doi.org/10.1039/d3cp03029f
  21. Iyer, S., Kumar, A., Savolainen, A., Barua, S., Daub, C., Pichelstorfer, L., Roldin, P., Garmash, O., Seal, P., Kurten, T., & Rissanen, M. (2023). Molecular rearrangement of bicyclic peroxy radicals is a key route to aerosol from aromatics. Nature Communications14(1), Article 4984. https://doi.org/10.1038/s41467-023-40675-2
  22. Koenig, A. M., Magand, O., Rose, C., Di Muro, A., Miyazaki, Y., Colomb, A., Rissanen, M., Lee, C. F., Koenig, T. K., Volkamer, R., Brioude, J., Verreyken, B., Roberts, T., Edwards, B. A., Sellegri, K., Arellano, S., Kowalski, P., Aiuppa, A., Sonke, J. E., & Dommergue, A. (2023). Observed in-plume gaseous elemental mercury depletion suggests significant mercury scavenging by volcanic aerosols. Environmental science: Atmospheres, (3), 1418-1438. https://doi.org/10.1039/d3ea00063j
  23. Kubečka, J., Besel, V., Neefjes, I., Knattrup, Y., Kurten, T., Vehkamäki, H., & Elm, J. (2023). Computational Tools for Handling Molecular Clusters: Configurational Sampling, Storage, Analysis, and Machine Learning. ACS Omega8(47), 45115–45128. https://doi.org/10.1021/acsomega.3c07412
  24. Kulmala, M., Lintunen, A., Lappalainen, H., Virtanen, A., Yan, C., Ezhova, E., Nieminen, T., Riipinen, I., Makkonen, R., Tamminen, J., Sundström, A.-M., Arola, A., Hansel, A., Lehtinen, K., Vesala, T., Petäjä, T., Bäck, J., Kokkonen, T., & Kerminen, V.-M. (2023). Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere. Atmospheric Chemistry and Physics23(23), 14949-14971. https://doi.org/10.5194/acp-23-14949-2023
  25. Kühn, Thomas & Miinalainen, Tuuli & Kokkola, Harri & Lehtinen, Kari. (2023). Scientific Overview on SLCPs: Characteristics, Impacts and Uncertainties. 10.1163/9789004684089_003.
  26. Laakso, J., Himanen, L., Homm, H., Morooka, E. V., Jäger, M. O. J., Todorović, M., & Rinke, P. (2023). Updates to the DScribe library : New descriptors and derivatives. Journal of Chemical Physics158(23), 1-8. Article 234802. https://doi.org/10.1063/5.0151031
  27. Lampimäki, M., Baalbaki, R., Ahonen, L., Korhonen, F., Cai, R., Chan, T., Stolzenburg, D., Petäjä, T., Kangasluoma, J., Vanhanen, J., & Lehtipalo, K. (2023). Novel aerosol diluter - Size dependent characterization down to 1 nm particle size. Journal of Aerosol Science172, Article 106180. https://doi.org/10.1016/j.jaerosci.2023.106180
  28. Lee, B. H., Iyer, S., Kurten, T., Varelas, J. G., Luo, J., Thomson, R. J., & Thornton, J. A. (2023). Ring-opening yields and auto-oxidation rates of the resulting peroxy radicals from OH-oxidation of alpha-pinene and beta-pinene. Environmental science: Atmospheres3(2), 399-407. https://doi.org/10.1039/d2ea00133k
  29. Li, Z., Hyttinen, N., Vainikka, M., Tikkasalo, O.-P., Schobesberger, S., & Yli-Juuti, T. (2023). Saturation vapor pressure characterization of selected low-volatility organic compounds using a residence time chamber. Atmospheric Chemistry and Physics23(12), 6863-6877. https://doi.org/10.5194/acp-23-6863-2023
  30. Li, Zijun, Buchholz, Angela, Barreira, Luis M.F., Ylisirniö, Arttu, Hao, Liqing, Pullinen, Iida, Schobesberger, Siegfried, & Virtanen, Annele (2023) Isothermal evaporation of alpha-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions. Atmospheric Chemistry and Physics23(1), pp. 203-220.
  31. Lintunen, A., Aalto, J., Asmi, A., Aurela, M., Bäck, J., Ehn, M., Ezhova, E., Hakola, H., Hartonen, K., Heinonsalo, J., Hellén, H., Hölttä, T., Jokinen, T., Järvi, L., Järvinen, H., Kangasluoma, J., Kerminen, V.-M., Kolari, P., Köster, K., ... Kulmala, M. (2023). The Center of Excellence in Atmospheric Science (2002-2019)-from molecular and biological processes to the global climate. Boreal Environment Research28, 15-80. https://www.borenv.net/BER/archive/pdfs/ber28/ber28-015-080.pdf
  32. Meder, M., Peräkylä, O., Varelas, J. G., Luo, J., Cai, R., Zhang, Y., Kurten, T., Riva, M., Rissanen, M., Geiger, F. M., Thomson, R. J., & Ehn, M. (2023). Selective deuteration as a tool for resolving autoxidation mechanisms in alpha-pinene ozonolysis. Atmospheric Chemistry and Physics23(7), 4373-4390. https://doi.org/10.5194/acp-23-4373-2023
  33. Miinalainen, Tuuli & Kokkola, Harri & Lipponen, Antti & Hyvärinen, Antti-Pekka & Soni, Vijay & Lehtinen, Kari & Kühn, Thomas. (2022). Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling. 10.5194/acp-2022-513.
  34. O’Donnell, Samuel & Akherati, Ali & He, Yicong & Hodshire, Anna & Shilling, John & Kuang, Chongai & Fast, Jerome & Mei, Fan & Schobesberger, Siegfried & Thornton, Joel & Smith, James & Jathar, Shantanu & Pierce, Jeffrey. (2023). Look Up: Probing the Vertical Profile of New Particle Formation and Growth in the Planetary Boundary Layer With Models and Observations. Journal of Geophysical Research: Atmospheres. 128. 10.1029/2022JD037525.
  35. Okuljar, M., Garmash, O., Olin, M., Kalliokoski, J., Timonen, H., Niemi, J. V., Paasonen, P., Kontkanen, J., Zhang, Y., Hellén, H., Kuuluvainen, H., Aurela, M., Manninen, H. E., Sipilä, M., Rönkkö, T., Petäjä, T., Kulmala, M., Dal Maso, M., & Ehn, M. (2023). Influence of anthropogenic emissions on the composition of highly oxygenated organic molecules in Helsinki: a street canyon and urban background station comparison. Atmospheric Chemistry and Physics23(20), 12965–12983. https://doi.org/10.5194/acp-23-12965-2023
  36. Partovi, F., Mikkilä, J., Iyer, S., Mikkilä, J., Kontro, J., Ojanperä, S., Juuti, P., Kangasluoma, J., Shcherbinin, A., & Rissanen, M. (2023). Pesticide Residue Fast Screening Using Thermal Desorption Multi-Scheme Chemical Ionization Mass Spectrometry (TD-MION MS) with Selective Chemical Ionization. ACS Omega8(29), 25749-25757. https://doi.org/10.1021/acsomega.3c00385
  37. Pekkanen, T. T., Timonen, R. S., Ramu, E. A., Lendvay, G., & Eskola, A. J. (2023). Temperature and Pressure Dependence of the Reaction between Ethyl Radical and Molecular Oxygen: Experiments and Master Equation Simulations. Journal of Physical Chemistry A127(5), 1302-1313. https://doi.org/10.1021/acs.jpca.2c07780
  38. Peräkylä, O., Berndt, T., Franzon, L., Hasan, G., Meder, M., Valiev, R. R., Daub, C. D., Varelas, J. G., Geiger, F. M., Thomson, R. J., Rissanen, M., Kurten, T., & Ehn, M. (2023). Large Gas-Phase Source of Esters and Other Accretion Products in the Atmosphere. Journal of the American Chemical Society145(14), 7780-7790. https://doi.org/10.1021/jacs.2c10398
  39. Pusfitasari, E. D., Ruiz-Jimenez, J., Tiusanen, A., Suuronen, M., Haataja, J. J., Wu, Y., Kangasluoma, J., Luoma, K., Petäjä, T., Jussila, M., Hartonen, K., & Riekkola, M.-L. (2023). Vertical profiles of volatile organic compounds and fine particles inatmospheric air by using an aerial drone with miniaturized samplers andportable devices. Atmospheric Chemistry and Physics23(10), 5885-5904. https://doi.org/10.5194/acp-23-5885-2023
  40. Salminen, Teemu & Lehtinen, Kari & Seppänen, Aku. (2023). Application of the finite element method to the multicomponent general dynamic equation of aerosols. Journal of Aerosol Science. 174. 106260. 10.1016/j.jaerosci.2023.106260.
  41. Savvides, R., Henelius, A., Oikarinen, E., & Puolamäki, K. (2023). Visual Data Exploration as a Statistical Testing Procedure: Within-view and Between-view Multiple Comparisons. IEEE Transactions on Visualization and Computer Graphics29(9), 3937-3948. https://doi.org/10.1109/TVCG.2022.3175532
  42. Savvides, R., Mäkelä, J. S., & Puolamäki, K. (2023). Model selection with bootstrap validation. Statistical analysis and data mining16(2), 162-186. https://doi.org/10.1002/sam.11606
  43. Schobesberger, S., D'Ambro, E. L., Vettikkat, L., Lee, B. H., Peng, Q., Bell, D. M., Shilling, J. E., Shrivastava, M., Pekour, M., Fast, J., & Thornton, J. A. (2023). Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry. Atmospheric Measurement Techniques16(2), 247-271. https://doi.org/10.5194/amt-16-247-2023
  44. Seakins, P. W., Allanic, A., Jammoul, A., Mellouki, A., Muñoz, A., Rickard, A. R., Doussin, J.-F., Kleffmann, J., Kangasluoma, J., Lehtipalo, K., Cain, K., Dada, L., Kulmala, M., Cazaunau, M., Newland, M. J., Ródenas, M., Wiesen, P., Jorga, S., Pandis, S. N., & Petäjä, T. (2023). Analysis of Chamber Data. teoksessa J. F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, & J. Wenger (Toimittajat), A Practical Guide to Atmospheric Simulation Chambers (Sivut 241-291). Springer. https://doi.org/10.1007/978-3-031-22277-1_7
  45. Seal, P., Barua, S., Iyer, S., Kumar, A., & Rissanen, M. (2023). A systematic study on the kinetics of H-shift reactions in pristine acyl peroxy radicals. Physical Chemistry Chemical Physics25(41), 28205-28212. https://doi.org/10.1039/d3cp01833d
  46. Stolzenburg, D., Cai, R., Blichner, S. M., Kontkanen, J., Zhou, P., Makkonen, R., Kerminen, V.-M., Kulmala, M., Riipinen, I., & Kangasluoma, J. (2023). Atmospheric nanoparticle growth. Reviews of Modern Physics95(4), Artikkeli 045002. https://doi.org/10.1103/RevModPhys.95.045002
  47. Stolzenburg, D., Laurila, T., Aalto, P., Vanhanen, J., Petäjä, T., & Kangasluoma, J. (2023). Improved counting statistics of an ultrafine differential mobility particle size spectrometer system. Atmospheric Measurement Techniques16(10), 2471-2483. https://doi.org/10.5194/amt-16-2471-2023
  48. Tanaka, A., Tyree, J., Björklund, A., Mäkelä, J. S., & Puolamäki, K. (2023). 𝛘iplot: Web-First Visualisation Platform for Multidimensional Data. In Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part VII (pp. 335-339). (Lecture Notes in Computer Science; Vol. 14175, No. 1). Springer. https://doi.org/10.1007/978-3-031-43430-3_26
  49. Tham, Y. J., Sarnela, N., Iyer, S., Li, Q., Angot, H., Quelever, L. L. J., Beck, I., Laurila, T., Beck, L. J., Boyer, M., Carmona-Garcia, J., Borrego-Sánchez, A., Roca-Sanjuán, D., Peräkylä, O., Thakur, R. C., He, X.-C., Zha, Q., Howard, D., Blomquist, B., ... Saiz-Lopez, A. (2023). Widespread detection of chlorine oxyacids in the Arctic atmosphere. Nature Communications14(1), Article 1769. https://doi.org/10.1038/s41467-023-37387-y
  50. Toropainen, A., Kangasluoma, J., Vehkamäki, H., & Kubečka, J. (2023). Heterogeneous Ion-Induced Nucleation of Water and Butanol Vapors Studied via Computational Quantum Chemistry beyond Prenucleation and Critical Cluster Sizes. Journal of Physical Chemistry A127(18), 3976-3990. https://doi.org/10.1021/acs.jpca.3c00066
  51. Vettikkat, L., Miettinen, P., Buchholz, A., Rantala, P., Yu, H., Schallhart, S., Petaja, T., Seco, R., Mannisto, E., Kulmala, M., Tuittila, E.-S., Guenther, A. B., & Schobesberger, S. (2023). High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes. Atmospheric Chemistry and Physics23(4), 2683-2698. https://doi.org/10.5194/acp-23-2683-2023
  52. Wang, Y., Ma, Y., Yan, C., Yao, L., Cai, R., Li, S., Lin, Z., Zhao, X., Yin, R., Deng, C., Kangasluoma, J., He, X.-C., Hakala, S., Fan, X., Chen, S., Ma, Q., Kerminen, V.-M., Petäjä, T., Xin, J., ... Kulmala, M. (2023). Sulfur Dioxide Transported From the Residual Layer Drives Atmospheric Nucleation During Haze Periods in Beijing. Geophysical Research Letters50(6), Article e2022GL100514. https://doi.org/10.1029/2022GL100514
  53. Yang, H., Häkkinen, E., Ding, D., Cai, R., & Kangasluoma, J. (2023). Beyond size classification: The dynamic-aerosol-size electrical mobility spectrometer. Journal of Aerosol Science170, Article 106141. https://doi.org/10.1016/j.jaerosci.2023.106141
  54. Yang, H., Neefjes, I., Tikkanen, V., Kubečka, J., Kurten, T., Vehkamäki, H., & Reischl, B. (2023). Collision-sticking rates of acid–base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model. Atmospheric Chemistry and Physics23(10), 5993-6009. https://doi.org/10.5194/acp-23-5993-2023
  55. Yin, R., Li, X., Yan, C., Cai, R., Zhou, Y., Kangasluoma, J., Sarnela, N., Lampilahti, J., Petäjä, T., Kerminen, V.-M., Bianchi, F., Kulmala, M., & Jiang, J. (2023). Revealing the sources and sinks of negative cluster ions in an urban environment through quantitative analysis. Atmospheric Chemistry and Physics23(9), 5279-5296. https://doi.org/10.5194/acp-23-5279-2023
  56. Zhao, J., Häkkinen, E., Graeffe, F., Krechmer, J. E., Canagaratna, M. R., Worsnop, D. R., Kangasluoma, J., & Ehn, M. (2023). A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis. Atmospheric Chemistry and Physics23(6), 3707-3730. https://doi.org/10.5194/acp-23-3707-2023
  1. Alfaouri, D., Passananti, M., Kangasluoma, J., Zanca, T., Ahonen, L., Kubecka, J., Myllys, N., & Vehkamäki, H. (2022). A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 15(1), 11-19. https://doi.org/10.5194/amt-15-11-2022
  2. Amaladhasan, D. A., Heyn, C., Hoyle, C. R., El-Haddad, I., Elser, M., Pieber, S. M., Slowik, J. G., Amorim, A., Duplissy, J., Ehrhart, S., Makhmutov, V., Molteni, U., Rissanen, M., Stozhkov, Y., Wagner, R., Hansel, A., Kirkby, J., Donahue, N. M., Volkamer, R., ... Zuend, A. (2022). Modelling the gas-particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity. Atmospheric Chemistry and Physics, 22(1), 215-244. https://doi.org/10.5194/acp-22-215-2022
  3. Ameziane, M., Mansell, R., Havu, V., Rinke, P., & van Dijken, S. (2022). Lithium-Ion Battery Technology for Voltage Control of Perpendicular Magnetization. Advanced Functional Materials, 32(29), Article 2113118. Advance online publication. https://doi.org/10.1002/adfm.202113118
  4. Baryshnikov, G. V., Valiev, R. R., Valiulina, L. I., Kurtsevich, A. E., Kurten, T., Sundholm, D., Pittelkow, M., Zhang, J., & agren, H. (2022). Odd-Number Cyclo[n]Carbons Sustaining Alternating Aromaticity. Journal of Physical Chemistry A, 126(16), 2445-2452. https://doi.org/10.1021/acs.jpca.1c08507
  5. Beck, L. J., Schobesberger, S., Junninen, H., Lampilahti, J., Manninen, A., Dada, L., Leino, K., He, X-C., Pullinen, I., Quelever, L. L. J., Franck, A., Poutanen, P., Wimmer, D., Korhonen, F., Sipilä, M., Ehn, M., Worsnop, D. R., Kerminen, V-M., Petäjä, T., ... Duplissy, J. (2022). Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 22(13), 8547-8577. https://doi.org/10.5194/acp-22-8547-2022
  6. Beck, L. J., Schobesberger, S., Sipilä, M., Kerminen, V-M., & Kulmala, M. (2022). Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer. Atmospheric Measurement Techniques, 15(6), 1957-1965. https://doi.org/10.5194/amt-15-1957-2022
  7. Bianco, A., Neefjes, I., Alfaouri, D., Vehkamäki, H., Kurten, T., Ahonen, L., Passananti, M., & Kangasluoma, J. (2022). Separation of isomers using a differential mobility analyser (DMA): Comparison of experimental vs modelled ion mobility. Talanta, 243, Article 123339. https://doi.org/10.1016/j.talanta.2022.123339
  8. Björklund, A., Henelius, A., Oikarinen, E., Kallonen, K., & Puolamäki, K. (2022). Robust regression via error tolerance. Data Mining and Knowledge Discovery, 36(2), 781–810. https://doi.org/10.1007/s10618-022-00819-2
  9. Boy, M., Zhou, P., Kurten, T., Chen, D., Xavier, C., Clusius, P., Roldin, P., Baykara, M., Pichelstorfer, L., Foreback, B., Bäck, J., Petäjä, T., Makkonen, R., Kerminen, V-M., Pihlatie, M., Aalto, J., & Kulmala, M. (2022). Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates. npj climate and atmospheric science, 5(1), Article 72. https://doi.org/10.1038/s41612-022-00292-0
  10. Cai, R., & Kangasluoma, J. (2022). Response to the comments on "The proper view of cluster free energy in nucleation theories" by Roope Halonen. Aerosol Science and Technology, 56(12), 1071-1074. https://doi.org/10.1080/02786826.2022.2130028
  11. Cai, R., & Kangasluoma, J. (2022). The proper view of cluster free energy in nucleation theories. Aerosol Science and Technology, 56(8), 757-766. https://doi.org/10.1080/02786826.2022.2075250
  12. Cai, R., Deng, C., Stolzenburg, D., Li, C., Guo, J., Kerminen, V-M., Jiang, J., Kulmala, M., & Kangasluoma, J. (2022). Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm. Atmospheric Chemistry and Physics, 22(22), 14571-14587. https://doi.org/10.5194/acp-22-14571-2022
  13. Cai, R., Häkkinen, E., Yan, C., Jiang, J., Kulmala, M., & Kangasluoma, J. (2022). The effectiveness of the coagulation sink of 3–10 nm atmospheric particles. Atmospheric Chemistry and Physics, 22(17), 11529-11541. https://doi.org/10.5194/acp-22-11529-2022
  14. Cai, R., Yin, R., Yan, C., Yang, D., Deng, C., Dada, L., Kangasluoma, J., Kontkanen, J., Halonen, R., Ma, Y., Zhang, X., Paasonen, P., Petäjä, T., Kerminen, V-M., Liu, Y., Bianchi, F., Zheng, J., Wang, L., Hao, J., ... Jiang, J. (2022). The missing base molecules in atmospheric acid-base nucleation. National science review, 9(10). https://doi.org/10.1093/nsr/nwac137
  15. Carracedo, L. G., Lehtipalo, K., Ahonen, L. R., Sarnela, N., Holm, S., Kangasluoma, J., Kulmala, M., Winkler, P. M., & Stolzenburg, D. (2022). On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments. Atmospheric Chemistry and Physics, 22(19), 13153-13166. https://doi.org/10.5194/acp-22-13153-2022
  16. D'Ambro, E. L., Hyttinen, N., Moller, K. H., Iyer, S., Otkjaer, R., Bell, D. M., Liu, J., Lopez-Hilfiker, F. D., Schobesberger, S., Shilling, J. E., Zelenyuk, A., Kjaergaard, H. G., Thornton, J. A., & Kurten, T. (2022). Pathways to Highly Oxidized Products in the Delta 3-Carene + OH System. Environmental Science & Technology, 56(4), 2213-2224. https://doi.org/10.1021/acs.est.1c06949
  17. Daub, C. D., Valiev, R., Salo, V-T., Zakai, I., Gerber, R. B., & Kurten, T. (2022). Computed Pre-reactive Complex Association Lifetimes Explain Trends in Experimental Reaction Rates for Peroxy Radical Recombinations. ACS Earth and Space Chemistry, 6, 2446-2452. https://doi.org/10.1021/acsearthspacechem.2c00159
  18. Daub, C. D., Zakai, I., Valiev, R., Salo, V-T., Gerber, R. B., & Kurten, T. (2022). Energy transfer, pre-reactive complex formation and recombination reactions during the collision of peroxy radicals. Physical Chemistry Chemical Physics, 24(17), 10033-10043. https://doi.org/10.1039/d1cp04720e
  19. Deng, C., Li, Y., Yan, C., Wu, J., Cai, R., Wang, D., Liu, Y., Kangasluoma, J., Kerminen, V-M., Kulmala, M., & Jiang, J. (2022). Measurement report: Size distributions of urban aerosols down to 1 nm from long-term measurements. Atmospheric Chemistry and Physics, 22(20), 13569-13580. https://doi.org/10.5194/acp-22-13569-2022
  20. Du, W., Cai, J., Zheng, F., Yan, C., Zhou, Y., Guo, Y., Chu, B., Yao, L., Heikkinen, L. M., Fan, X., Wang, Y., Cai, R., Hakala, S., Chan, T., Kontkanen, J., Tuovinen, S., Petäjä, T., Kangasluoma, J., Bianchi, F., ... Kulmala, M. (2022). Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science & Technology Letters, 9(5), 375-382. https://doi.org/10.1021/acs.estlett.2c00159
  21. Du, W., Wang, W., Liu, R., Wang, Y., Zhang, Y., Zhao, J., Dada, L., Xie, C., Wang, Q., Xu, W., Zhou, W., Zhang, F., Li, Z., Fu, P., Li, J., Kangasluoma, J., Wang, Z., Ge, M., Kulmala, M., & Sun, Y. (2022). Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 802, Article 149695. https://doi.org/10.1016/j.scitotenv.2021.149695
  22. Dvorak, M., Baumeier, B., Golze, D., Leppert, L., & Rinke, P. (2022). Editorial: Many-Body Green’s Functions and the Bethe-Salpeter Equation in Chemistry: From Single Molecules to Complex Systems. Frontiers in Chemistry, 10, 1-2. Article 866492. https://doi.org/10.3389/fchem.2022.866492
  23. Feng, Z., Liu, Y., Zheng, F., Yan, C., Fu, P., Zhang, Y., Lian, C., Wang, W., Cai, J., Du, W., Chu, B., Wang, Y., Kangasluoma, J., Bianchi, F., Petäjä, T., & Kulmala, M. (2022). Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmospheric Environment, 273, Article 118971. https://doi.org/10.1016/j.atmosenv.2022.118971
  24. Feng, Z., Zheng, F., Yan, C., Fu, P., Zhang, Y., Lin, Z., Cai, J., Du, W., Wang, Y., Kangasluoma, J., Bianchi, F., Petäjä, T., Wang, Y., Kulmala, M., & Liu, Y. (2022). The impact of ammonium on the distillation of organic carbon in PM2.5. Science of the Total Environment, 803, Article 150012. https://doi.org/10.1016/j.scitotenv.2021.150012
  25. Fernandez de la Mora, J., Kangasluoma, J., & Attoui, M. (2022). Size resolution of the Airmodus A10 particle size magnifier with purified clusters. Journal of Aerosol Science, 160, Article 105916. https://doi.org/10.1016/j.jaerosci.2021.105916
  26. Finkenzeller, H., Iyer, S., He, X-C., Simon, M., Koenig, T. K., Lee, C. F., Valiev, R., Hofbauer, V., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bell, D. M., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dada, L., Duplissy, J., ... Volkamer, R. (2023). The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nature Chemistry, 15(1), 129–135. https://doi.org/10.1038/s41557-022-01067-z
  27. Fomete, S. K. W., Johnson, J. S., Myllys, N., Neefjes, I., Reischl, B., & Jen, C. N. (2022). Ion–Molecule Rate Constants for Reactions of Sulfuric Acid with Acetate and Nitrate Ions. Journal of Physical Chemistry A, 126(44), 8240-8248. https://doi.org/10.1021/acs.jpca.2c02072
  28. Foreback, B., Dada, L., Daellenbach, K. R., Yan, C., Wang, L., Chu, B., Zhou, Y., Kokkonen, T., Kurppa, M., Pileci, R. E., Wang, Y., Chan, T., Kangasluoma, J., Zhuohui, L., Guo, Y., Li, C., Baalbaki, R., Kujansuu, J., Fan, X., ... Paasonen, P. (2022). Measurement report: A multi-year study on the impacts of Chinese New Year celebrations on air quality in Beijing, China. Atmospheric Chemistry and Physics, 22(17), 11089-11104. https://doi.org/10.5194/acp-22-11089-2022
  29. Fredrickson C. D., Palm B. B., Lee B. H., Zhang X., Orlando J. J., Tyndall G. S., Garofalo L. A., Pothier M. A., Farmer D. K., Decker Z. C. J., Robinson M. A., Brown S. S., Murphy S. M., Shen Y., Sullivan A. P., Schobesberger S., Thornton J. A. (2022) Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption ACS Earth Space Chem., 6, 1067-1079, doi:10.1021/acsearthspacechem.2c00007.
  30. Golze, D., Hirvensalo, M., Hernández-León, P., Aarva, A., Etula, J., Susi, T., Rinke, P., Laurila, T., & Caro, M. A.(2022). Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW. Chemistry of Materials, 34(14), 6240−6254. https://doi.org/10.1021/acs.chemmater.1c04279
  31. Guo, X., Fang, L., Xu, Y., Duan, W., Rinke, P., Todorović, M., & Chen, X. (2022). Molecular Conformer Search with Low-Energy Latent Space. Journal of Chemical Theory and Computation, 18(7), 4574−4585. https://doi.org/10.1021/acs.jctc.2c00290
  32. Hakala, S., Vakkari, V., Bianchi, F., Dada, L., Deng, C., Dällenbach, K., Fu, Y., Jiang, J., Kangasluoma, J., Kujansuu, J., Liu, Y., Petäjä, T., Wang, L., Yan, C., Kulmala, M., & Paasonen, P. (2022). Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental science: Atmospheres, 2(2), 146-164. https://doi.org/10.1039/d1ea00089f
  33. Heitto, A., Lehtinen, K., Petäjä, T., Lopez-Hilfiker, F., Thornton, J. A., Kulmala, M., & Yli-Juuti, T. (2022). Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 22(1), 155-171. https://doi.org/10.5194/acp-22-155-2022
  34. Hyttinen, N., Pullinen, I., Nissinen, A., Schobesberger, S., Virtanen, A., & Yli-Juuti, T. (2022). Comparison of saturation vapor pressures of <i>α</i>-pinene + O<sub>3</sub> oxidation products derived from COSMO-RS computations and thermal desorption experiments. Atmospheric Chemistry and Physics, 22(2), 1195–1208. https://doi.org/10.5194/acp-22-1195-2022
  35. Ibragimova, R., Rinke, P., & Komsa, H. P. (2022). Native Vacancy Defects in MXenes at Etching Conditions. Chemistry of Materials, 34(7), 2896-2906. https://doi.org/10.1021/acs.chemmater.1c03179
  36. Isokääntä, S., Mikkonen, S., Laurikainen, M., Buchholz, A., Schobesberger, S., Blande, J. D., Nieminen, T., Ylivinkka, I., Bäck, J., Petäjä, T., Kulmala, M., & Yli-Juuti, T. (2022). Multivariate model-based investigation of the temperature dependence of ozone concentration in Finnish boreal forest. Atmospheric Environment, 289, Article 119315. https://doi.org/10.1016/j.atmosenv.2022.119315
  37. Jin, S. A., Kämäräinen, T., Rinke, P., Rojas, O. J., & Todorovic, M. (2022). Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models. MRS Bulletin, 47(1), 29-37. Advance online publication. https://doi.org/10.1557/s43577-021-00183-4
  38. Jokinen, T., Lehtipalo, K., Thakur, R. C., Ylivinkka, I., Neitola, K., Sarnela, N., Laitinen, T., Kulmala, M., Petäjä, T., & Sipilä, M. (2022). Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 22(4), 2237-2254. https://doi.org/10.5194/acp-22-2237-2022
  39. Junninen, H., Ahonen, L., Bianchi, F., Quelever, L., Schallhart, S., Dada, L., Manninen, H. E., Leino, K., Lampilahti, J., Mazon, S. B., Rantala, P., Räty, M., Kontkanen, J., Negri, S., Aliaga, D., Garmash, O., Alekseychik, P., Lipp, H., Tamme, K., ... Kulmala, M. (2022). Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications earth & environment, 3(1), Article 93. https://doi.org/10.1038/s43247-022-00406-9
  40. Järvi, J., Todorović, M., & Rinke, P. (2022). Efficient modeling of organic adsorbates on oxygen-intercalated graphene on Ir(111). Physical Review B, 105(19), 1-10. Article 195304. https://doi.org/10.1103/PhysRevB.105.195304
  41. Kangasluoma, J., Mikkilä, J., Hemmilä, V., Kausiala, O., Hakala, J., Iakovleva, E., Juuti, P., Sipilä, M., Junninen, H., Jost, H. J., & Shcherbinin, A. (2022). Atmospheric pressure thermal desorption chemical ionization mass spectrometry for ultra-sensitive explosive detection. Talanta, 249, Article 123653. https://doi.org/10.1016/j.talanta.2022.123653
  42. Kulik, H. J., Hammerschmidt, T., Schmidt, J., Botti, S., Marques, M. A. L., Boley, M., Scheffler, M., Todorović, M., Rinke, P., Oses, C., Smolyanyuk, A., Curtarolo, S., Tkatchenko, A., Bartók, A. P., Manzhos, S., Ihara, M., Carrington, T., Behler, J., Isayev, O., ... Ghiringhelli, L. M. (2022). Roadmap on Machine learning in electronic structure. Electronic Structure, 4(2), 1-60. Article 023004. https://doi.org/10.1088/2516-1075/ac572f
  43. Laakso, J., Todorovic, M., Li, J., Zhang, G-X., & Rinke, P. (2022). Compositional engineering of perovskites with machine learning. Physical Review Materials, 6(11), 1-10. Article 113801. https://doi.org/10.1103/PhysRevMaterials.6.113801
  44. Li, H., Almeida, T. G., Luo, Y., Zhao, J., Palm, B. B., Daub, C. D., Huang, W., Mohr, C., Krechmer, J. E., Kurten, T., & Ehn, M. (2022). Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides. Atmospheric Measurement Techniques, 15(6), 1811-1827. https://doi.org/10.5194/amt-15-1811-2022
  45. Li, J., Jin, Y., Rinke, P., Yang, W., & Golze, D. (2022). Benchmark of GW Methods for Core-Level Binding Energies. Journal of Chemical Theory and Computation, 18(12), 7570-7585. Advance online publication. https://doi.org/10.1021/acs.jctc.2c00617
  46. Lipponen, A., Reinvall, J., Väisänen, A., Taskinen, H., Lähivaara, T., Sogacheva, L., Kolmonen, P., Lehtinen, K., Arola, A., and Kolehmainen, V.: Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product, Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, 2022.
  47. Löfgren, J., Tarasov, D., Koitto, T., Rinke, P., Balakshin, M., & Todorović, M. (2022). Machine Learning Optimization of Lignin Properties in Green Biorefineries. ACS Sustainable Chemistry and Engineering, 10(29), 9469-9479. https://doi.org/10.1021/acssuschemeng.2c01895
  48. Ma, L., Zhang, Y., Lin, Z., Zhou, Y., Yan, C., Zhang, Y., Zhou, W., Ma, W., Hua, C., Li, X., Deng, C., Qi, Y., Dada, L., Li, H., Bianchi, F., Petäjä, T., Kangasluoma, J., Jiang, J., Liu, S., ... Liu, Y. (2022). Deposition potential of 0.003-10 mu m ambient particles in the humidified human respiratory tract: Contribution of new particle formation events in Beijing. Ecotoxicology and Environmental Safety, 243, Article 114023. https://doi.org/10.1016/j.ecoenv.2022.114023
  49. Mäkelä, J. S., Melkas, L., Mammarella, I., Nieminen, T., Halasinamara Chandramouli, S., Savvides, R., & Puolamäki, K. (2022). Technical note: Incorporating expert domain knowledge into causal structure discovery workflows. Biogeosciences, 19(8), 2095-2099. https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-2021-231
  50. Neefjes, I., Halonen, R., Vehkamäki, H., & Reischl, B. (2022). Modeling approaches for atmospheric ion-dipole collisions: all-atom trajectory simulations and central field methods. Atmospheric Chemistry and Physics, 22(17), 11155-11172. https://doi.org/10.5194/acp-22-11155-2022
  51. Olin, M., Okuljar, M., Rissanen, M., Kalliokoski, J., Shen, J., Dada, L., Lampimäki, M., Wu, Y., Lohila, A. K., Duplissy, J., Sipilä, M., Petäjä, T., Kulmala, M., & Dal Maso, M. (2022). Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra. Atmospheric Chemistry and Physics, 22(12), 8097–8115. https://doi.org/10.5194/acp-22-8097-2022
  52. Pekkanen, T. T., Valkai, L., Joshi, S. P., Lendvay, G., Heinonen, P., Timonen, R. S., & Eskola, A. J. (2022). An experimental and computational study of the reaction between pent-3-en-2-yl radicals and oxygen molecules: switching from pure stabilisation to pure decomposition with increasing temperature. Faraday Discussions, 238(0), 619-644. https://doi.org/10.1039/d2fd00031h
  53. Pekkanen, T., Timonen, R., Robertson , S., Lendvay, G., Joshi, S. P., Reijonen, T. T., & Eskola, A. J. (2022). An Experimental and Computational Study of the Reaction Between 2-Methylallyl Radicals and Oxygen Molecules: Optimizing Master Equation Parameters with Trace Fitting. Physical Chemistry Chemical Physics, 24(8), 4729-4742. https://doi.org/10.1039/d1cp05591g
  54. Peltola, J., Seal, P., Vuorio, N., Heinonen, P., & Eskola, A. (2022). Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl- substituted Criegee intermediate (CH3)2COO using a new photolytic precursor. Physical Chemistry Chemical Physics, 24(8), 5211-5219. https://doi.org/10.1039/D1CP02270A, https://doi.org/10.1039/d1cp02270a
  55. Petäjä, T., Tabakova, K., Manninen, A., Ezhova, E., O'Connor, E., Moisseev, D., Sinclair, V., Backman, J., Levula, J., Luoma, K., Virkkula, A., Paramonov, M., Räty, M., Äijälä, M., Heikkinen, L., Ehn, M., Sipilä, M., Yli-Juuti, T., Virtanen, A., ... Kerminen, V-M. (2022). Influence of biogenic emissions from boreal forests on aerosol-cloud interactions. Nature Geoscience, 15(1), 42-+. https://doi.org/10.1038/s41561-021-00876-0
  56. Popolan-Vaida, D. M., Eskola, A. J., Rotavera, B., Lockyear, J. F., Wang, Z., Sarathy, S. M., Caravan, R. L., Zador, J., Sheps, L., Lucassen, A., Moshammer, K., Dagaut, P., Osborn, D. L., Hansen, N., Leone, S. R., & Taatjes, C. A. (2022). Formation of Organic Acids and Carbonyl Compounds in n-Butane Oxidation via gamma-Ketohydroperoxide Decomposition. Angewandte Chemie (International Edition), 61(42), Article 202209168. https://doi.org/10.1002/anie.202209168
  57. Quelever, L. L. J., Dada, L., Asmi, E., Lampilahti, J., Chan, T., Ferrara, J. E., Copes, G. E., Perez-Fogwill, G., Barreira, L., Aurela, M., Worsnop, D. R., Jokinen, T., & Sipilä, M. (2022). Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula. Atmospheric Chemistry and Physics, 22(12), 8417-8437. https://doi.org/10.5194/acp-22-8417-2022
  58. Räsänen, T., Reiman, A., Puolamäki, K., Oikarinen, E., & Lantto, E. (2022). Finding statistically significant high accident counts in exploration of occupational accident data. Journal of Safety Research, 82, 28-37. https://doi.org/10.1016/j.jsr.2022.04.003
  59. Rörup, B., Scholz, W., Dada, L., Leiminger, M., Baalbaki, R., Hansel, A., Kangasluoma, J., Manninen, H. E., Steiner, G., Vanhanen, J., Kulmala, M., & Lehtipalo, K. (2022). Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions. Journal of Aerosol Science161, Article 105945. https://doi.org/10.1016/j.jaerosci.2021.105945
  60. Salo, V-T., Valiev, R., Lehtola, S., & Kurten, T. (2022). Gas-Phase Peroxyl Radical Recombination Reactions: A Computational Study of Formation and Decomposition of Tetroxides. Journal of Physical Chemistry A, 126(25), 4046-4056. https://doi.org/10.1021/acs.jpca.2c01321
  61. Schattauer, C., Todorović, M., Ghosh, K., Rinke, P., & Libisch, F. (2022). Machine learning sparse tight-binding parameters for defects. npj Computational Materials, 8(1), 1-11. Article 116. https://doi.org/10.1038/s41524-022-00791-x
  62. Shen, J., Scholz, W., He, X-C., Zhou, P., Marie, G., Wang, M., Marten, R., Surdu, M., Rörup, B., Baalbaki, R., Amorim, A., Ataei, F., Bell, D. M., Bertozzi, B., Brasseur, Z., Caudillo, L., Chen, D., Chu, B., Dada, L., ... Worsnop, D. R. (2022). High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures. Environmental Science & Technology, 56(19), 13931–13944. https://doi.org/10.1021/acs.est.2c05154
  63. Skyttä, A., Gao, J., Cai, R., Ehn, M., Ahonen, L. R., Kurten, T., Wang, Z., Rissanen, M. P., & Kangasluoma, J. (2022). Isomer-Resolved Mobility-Mass Analysis of alpha-Pinene Ozonolysis Products. Journal of Physical Chemistry A, 126(30), 5040-5049. https://doi.org/10.1021/acs.jpca.2c03366
  64. Stolzenburg, D., Ozon, M., Kulmala, M., Lehtinen, K. E. J., Lehtipalo, K., & Kangasluoma, J. (2022). Combining instrument inversions for sub-10 nm aerosol number size-distribution measurements. Journal of Aerosol Science, 159, Article 105862. https://doi.org/10.1016/j.jaerosci.2021.105862
  65. Thakur, R. C., Dada, L., Beck, L. J., Quelever, L. L. J., Chan, T., Marbouti, M., He, X-C., Xavier, C., Sulo, J., Lampilahti, J., Lampimäki, M., Tham, Y. J., Sarnela, N., Lehtipalo, K., Norkko, A., Kulmala, M., Sipilä, M., & Jokinen, T. (2022). An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 22(9), 6365-6391. https://doi.org/10.5194/acp-22-6365-2022
  66. the MESSy Consortium, Wang, M., Xiao, M., Rörup, B., Shen, J., Dada, L., Baalbaki, R., Manninen, H. E., Brasseur, Z., Duplissy, J., Korhonen, K., Lehtipalo, K., Onnela, A., Petäjä, T., Piedehierro, A. A., Schobesberger, S., Welti, A., Wu, Y., Sipilä, M., ... Worsnop, D. R. (2022). Synergistic HNO3-H2SO4-NH3 upper tropospheric particle formation. Nature, 605(7910), 483-+. https://doi.org/10.1038/s41586-022-04605-4
  67. Tikkanen, V., Reischl, B., Vehkamäki, H., & Halonen, R. (2022). Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters. Proceedings of the National Academy of Sciences of the United States of America, 119(28), Article e2201955119. https://doi.org/10.1073/pnas.2201955119
  68. Vahabpour Roudsari, G., Pakarinen, O. H., Reischl, B., & Vehkamäki, H. (2022). Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries. Atmospheric Chemistry and Physics, 22(15), 10099-10114. https://doi.org/10.5194/acp-22-10099-2022
  69. Valiev, R., Kurten, T., Valiulina, L. I., Ketkov, S. Y., Cherepanov, V. N., Dimitrova, M., & Sundholm, D. (2022). Magnetically induced ring currents in metallocenothiaporphyrins. Physical Chemistry Chemical Physics, 24(3), 1666-1674. https://doi.org/10.1039/D1CP04779E
  70. Wang, Y., Clusius, P., Yan, C., Dällenbach, K., Yin, R., Wang, M., He, X-C., Chu, B., Lu, Y., Dada, L., Kangasluoma, J., Rantala, P., Deng, C., Lin, Z., Wang, W., Yao, L., Fan, X., Du, W., Cai, J., ... Kulmala, M. (2022). Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 56(2), 770-778. https://doi.org/10.1021/acs.est.1c05191
  71. Xavier, C., Baykara, M., Wollesen de Jonge, R., Altstädter, B., Clusius, P. S., Vakkari, V., Thakur, R., Beck, L., Becagli, S., Severi, M., Traversi, R., Krejci, R., Tunved, P., Mazzola, M., Wehner, B., Sipilä, M., Kulmala, M., Boy, M., & Pontus, R. (2022). Secondary aerosol formation in marine Arctic environments: a model measurement comparison at Ny-Ålesund. Atmospheric Chemistry and Physics, 22(15), 10023–10043. https://doi.org/10.5194/acp-22-10023-2022
  72. Yan, C., Shen, Y., Stolzenburg, D., Dada, L., Qi, X., Hakala, S., Sundström, A-M., Guo, Y., Lipponen, A., Kokkonen, T., Kontkanen, J., Cai, R., Cai, J., Chan, T., Chen, L., Chu, B., Deng, C., Du, W., Fan, X., ... Kulmala, M. (2022). The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing. Atmospheric Chemistry and Physics, 22(18), 12207-12220. https://doi.org/10.5194/acp-22-12207-2022
  73. Yang, H., Ding, D., Skyttä, A., Cai, R., Kulmala, M., & Kangasluoma, J. (2022). Electrical Mobility as an Indicator for Flexibly Deducing the Kinetics of Nanoparticle Evaporation. Journal of Physical Chemistry C, 126(20), 8794–8800. https://doi.org/10.1021/acs.jpcc.2c02858
  74. Yang, H., Song, G., & Hogan Jr., C. J. (2022). A molecular dynamics study of collisional heat transfer to nanoclusters in the gas phase. Journal of Aerosol Science159, Article 105891. https://doi.org/10.1016/j.jaerosci.2021.105891
  75. Zhang, R., Xie, H-B., Ma, F., Chen, J., Iyer, S., Simon, M., Heinritzi, M., Shen, J., Tham, Y. J., Kurten, T., Worsnop, D. R., Kirkby, J., Curtius, J., Sipilä, M., Kulmala, M., & He, X-C. (2022). Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation. Environmental Science & Technology, 56(19), 14166–14177. https://doi.org/10.1021/acs.est.2c04328