Hyytiälä publications 2019

Hyytiälä Forestry Field Station

1,Adamczyk B, Sietiö O-M, Straková P, Prommer J, Wild B, Hagner M, Pihlatie M, Fritze H, Richter A, Heinonsalo J. 2019. Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nature Communications 3982. DOI: tps://doi.org/10.1038/s41467-019-11993-1.

2. Adamczyk B, Sietiö O-M, Biasi C, Heinonsalo J. 2019. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. New Phytologist 223:16-21. DOI: https://doi.org/10.1111/nph.15729.

3. Ahonen, L., Li, C., Kubecka, J., Iyer, S., Vehkamäki, H., Petäjä, T., ... Hogan, C. J. 2019. Ion Mobility-Mass Spectrometry of Iodine Pentoxide-Iodic Acid Hybrid Cluster Anions in Dry and Humidified Atmospheres. Journal of Physical Chemistry Letters, 10(8), 1935-1941. https://doi.org/10.1021/acs.jpclett.9b00453.

4. Ala-Könni, J. 2019. Mixing processes under seasonal ice cover in boreal lake Kuivajärvi. Gradu.

5. Atherton, J., Liu, W., & Porcar-Castell, A. 2019. Nocturnal Light Emitting Diode Induced Fluorescence (LEDIF): A new technique to measure the chlorophyll a fluorescence emission spectral distribution of plant canopies in situ. Remote Sensing of Environment, 231, [111137]. https://doi.org/10.1016/j.rse.2019.03.030.

6. Boy, M., Thomson, E. S., Acosta Navarro, J-C., Arnalds, O., Batchvarova, E., Bäck, J., Berninger, F., Bilde, M., Brasseur, Z., Dagsson-Waldhauserova, P., Castarède, D., Dalirian, M., de Leeuw, G., Dragosics, M., Duplissy, E-M., Duplissy, J., Ekman, A. M. L., Fang, K., Gallet, J-C., Glasius, M. & 43 muuta. 2019. Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics. 19, 3, s. 2015-2061.

7. Bruckman, V. J. & Pumpanen, J. 2019. Chapter 17 - Biochar use in global forests: opportunities and challenges. Developments in Soil Science, Volume 36, 2019, Pages 427-453.

8. Burgos, M.A., Andrews, E., Titos, G. et al. 2019. A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 6, 157. Doi:10.1038/s41597-019-0158-7.

9. Dada, L. 2019. Biogenic New Particle Formation: Field Observations and Chamber Experiments. Report series of Aerosol Science 220. Väitöskirja.

10. Daellenbach, K. R., Kourtchev, I., Vogel, A. L., Bruns, E. A., Jiang, J., Petäjä, T., Jaffrezo, J.-L., Aksoyoglu, S., Kalberer, M., Baltensperger, U., El Haddad, I., and Prévôt, A. S. H. 2019. Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019.

11. Ding, Y., Schiestl-Aalto, P., Helmisaari, H-S., Makita, N., Ryhti, K., Kulmala, L. 2019. Temperature and moisture dependence of daily growth of Scots pine (Pinus sylvestris L.) roots in southern Finland, Tree Physiology, , tpz131,

12. Eger, P.G., Schuladen, J. Sobanski, N., Fischer, H., Karu, E., Williams, J., Riva, M., Zha, Q., Ehn, M., Quéléver, L.L.J., Schallhart, S. , Lelieveld, J., & Crowley, J. N. 2019. Pyruvic acid in the boreal forest: first measurements and impact on radical chemistry. https://doi.org/10.5194/acp-2019-768.

13. Eger, P. G., Helleis, F., Schuster, G., Phillips, G. J., Lelieveld, J. & Crowley, J. N. 2019. Chemical ionization quadrupole mass spectrometer with an electrical discharge ion source for atmospheric trace gas measurement, Atmospheric Measurement Techniques, 12, 1935-1954.

14. Falk, H. G. 2019. Transport and emissions of methane through stems of boreal trees in controlled condition. Gradu.

15. Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Yu, F. 2019. Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics Discussions, 19, 8591–8617.

16. Feret,G.le ,J-B.,Maire S.Jay R.Bendoula G.Hmimina A.Cheraiet J.C.Oliveira F.J.Ponzoni T.Solanki F.de Boissieu J.Chave Y.Nouvellon A.Porcar-Castell C.Proisy K.Soudani J.-P.Gastellu-Etchegorry M.-J.Lefèvre-Fonollosa. 2019. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sensing of Environment Volume 231, 15 September 2019, 110959

17. Fischer, H., Axinte, R., Bozem, H., Crowley, J. N., Ernest, C., Gilge, S., Hafermann, S., Harder, H., Hens, K., Janssen, R. H. H., Königstedt, R., Kubistin, D., Mallik, C., Martinez, M., Novelli, A., Parchatka, U., Plass-Dülmer, C., Pozzer, A., Regelin, E., Reiffs, A., Schmidt, T., Schuladen, J., and Lelieveld, J. 2019. Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe, Atmos. Chem. Phys., 19, 11953–11968, https://doi.org/10.5194/acp-19-11953-2019, 2019.

18. Foltýnová L, Salmon Y, Kooijmans L, et al. 2019. Internal conductance of Scots pine varies with vapour pressure deficit. Geophysical Research Abstracts. 2019;21.

19. Glazunov, A.V., Mortikov, E.V., Barskov, K.V. et al. 2019. Izv. Atmos. Ocean. Phys. 55: 312. https://doi.org/10.1134/S0001433819040042.

20. Halme, E., Pellikka, P. & Mottus, M. 2019. Utility of hyperspectral compared to multispectral remote sensing data in estimating forest biomass and structure variables in Finnish boreal forest. Int J Appl Earth Obs Geoinformation.

21. Hasan, G. 2019. Exploration and visualization tool for analysing big data from a large measurements. Earth first! (1055-8411) osa 2 s. 3.

22. Jiang, J., Aksoyoglu, S., Ciarelli, G., Oikonomakis, E., El-Haddad, I., Canonaco, F., O'Dowd, C., Ovadnevaite, J., Minguillón, M. C., Baltensperger, U., and Prévôt, A. S. H.: Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe, Atmos. Chem. Phys., 19, 3747–3768, https://doi.org/10.5194/acp-19-3747-2019, 2019.

23. Kiuru, P. 2019. Modeling CO2 Emissions from Boreal Lakes in Present and Future. JYU DISSERTATIONS 89.

24. Kiuru, P., Ojala, A., Mammarella, I., Heiskanen, J., Erkkilä, K.-M., Miettinen, H., Vesala, T., and Huttula, T.: Applicability and consequences of the integration of alternative models for CO2 transfer velocity into a process-based lake model, Biogeosciences, 16, 3297–3317, https://doi.org/10.5194/bg-16-3297-2019, 2019.

25. L. Kohl, M. Koskinen, K. Rissanen, I. Haikarainen, T. Polvinen, H. Hellén, and M. Pihlatie 2019. Technical note: Interferences of volatile organic compounds (VOC) on methane concentration measurements - Raw Data. Biogeosciences, 16, 3319–3332.

26. Kokkonen, NAK, Laine, AM, Laine, J, et al. 2019. Responses of peatland vegetation to 15‐year water level drawdown as mediated by fertility level. J Veg Sci. 2019; 30: 1206– 1216. https://doi.org/10.1111/jvs.12794

27. Kooijmans, L. M. J., Sun, W., Aalto, J., Erkkilä, K-M., Maseyk, K., Seibt, U., Vesala, T., Mammarella, I. & Chen, H. 2019. Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 116, 7, s. 2470-2475.

28. Korrensalo, A., Mehtätalo, L., Alekseychik, P. et al. 2019. Varying Vegetation Composition, Respiration and Photosynthesis Decrease Temporal Variability of the CO2 Sink in a Boreal Bog. Ecosystems (2019) doi:10.1007/s10021-019-00434-1

29. Kortelainen, P., Larmola, T., Rantakari, M., Juutinen, S., Alm, J., & Martikainen, P. J. (2019). Lakes as nitrous oxide sources in the boreal landscape. Global Change Biology. https://doi.org/10.1111/gcb.14928

30. Koebsch, F, Sonnentag, O, Järveoja, J, et al. Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Glob Change Biol. 2019; 00: 1– 12. https://doi.org/10.1111/gcb.14905

31. Laine, A. M., Mehtätalo, L., Tolvanen, A., Frolking, S. &Tuittila, E-S. 2019. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. Science of The Total Environment 647, 10 :169-181.

32. Laine, A. M, Mäkiranta, P, Laiho, R, et al. 2019.Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob Change Biol. 25: 1995– 2008. https://doi.org/10.1111/gcb.14617

33. Laine, J., Vasander, H., & Laiho, R. (1995). Long-Term Effects of Water Level Drawdown on the Vegetation of Drained Pine Mires in Southern Finland. Journal of Applied Ecology, 32(4), 785-802. doi:10.2307/2404818

34. Lan, H. 2019. Development of materials and methodologies for microextraction techniques. Väitöskirja.

35. Lan, H., Zhang, W., Smått, JH. et al. 2019. Selective extraction of aliphatic amines by functionalized mesoporous silica-coated solid phase microextraction Arrow. Microchim Acta (2019) 186: 412. https://doi.org/10.1007/s00604-019-3523-5

36. Launiainen, S., Guan, M., Salmivaara, A., and Kieloaho, A.-J.: Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach, Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, 2019.

37. Leino, K. 2019. Airborne and ground-based measurements of atmospheric particles from clusters to sub-micrometer sizes. Väitöskirja.

38. Leino, K., Lampilahti, J., Poutanen, P., Väänänen, R., Manninen, A., Mazon, S. B., Dada, L., Franck, A., Wimmer, D., Aalto, P. P., Ahonen, L. R., Enroth, J., Kangasluoma, J., Keronen, P., Korhonen, F., Laakso, H., Matilainen, T., Siivola, E., Manninen, H. E., Lehtipalo, K. & 3 muuta. 2019. Vertical profiles of sub-3nm particles over the boreal forest. Atmospheric Chemistry and Physics. 19, 6, s. 4127-4138.

39. Li, H., & Moisseev, D. 2019. Melting Layer Attenuation at Ka- and W-Bands as Derived From Multifrequency Radar Doppler Spectra Observations. Journal of Geophysical Research : Atmospheres, 124(16), 9520-9533. https://doi.org/10.1029/2019JD030316

40. Liebmann, J., Sobanski, N., Schuladen, J., Karu, E., Hellén, H., Hakola, H., Zha, Q., Ehn, M., Riva, M., Heikkinen, L., Williams, J., Fischer, H., Lelieveld, J. & Crowley, J. N. 2019. Alkyl nitrates in the boreal forest: formation via the NO3-, OH- and O3-induced oxidation of biogenic volatile organic compounds and ambient lifetimes, Atmos. Chem. Phys., 19, 10391–10403, https://doi.org/10.5194/acp-19-10391-2019, 2019.

41. Liu, W., Atherton, J., Mõttus, M., Gastellu-Etchegorry, J-P., Malenovský, Z., Raumonen, P., ... Porcar-Castell, A. 2019. Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements. Remote Sensing of Environment, 232, [111274]. https://doi.org/10.1016/j.rse.2019.111274.

42. Lowe, S.J., Partridge, D.G., Davies, J.F., Wilson, K. R., Topping, D. & Riipinen, I. 2019. Key drivers of cloud response to surface-active organics. Nat Commun 10, 5214 (2019) doi:10.1038/s41467-019-12982-0

43. Luoma, K., Virkkula, A., Aalto, P., Petäjä, T., and Kulmala, M.2019. Over a 10-year record of aerosol optical properties at SMEAR II, Atmos. Chem. Phys., 19, 11363–11382, https://doi.org/10.5194/acp-19-11363-2019, 2019.

44. Machacova, K., Vainio, E., Urban, O. et al. 2019. Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees. Nat Commun 10, 4989 doi:10.1038/s41467-019-12976-y.

45. Magney, T. S., Frankenberg, C.,Köhler, P., North, G., Davis, T. S.,Dold, C., et al. 2019. Disentangling changes in the spectral shape of chlorophyll fluorescence: Implicationsfor remote sensing of photosynthesis.Journal of Geophysical Research:Biogeosciences,124, 1491–1507. https://doi.org/10.1029/2019JG005029.

46. Mason, S. L., Hogan, R. J., Westbrook, C. D., Kneifel, S., Moisseev, D., & von Terzi, L. (2019). The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow. Atmospheric Measurement Techniques, 12(9), 4993-5018. https://doi.org/10.5194/amt-12-4993-2019

47. Mohr, C., Thornton, J.A., Heitto, A. et al. 2019. Molecular identification of organic vapors driving atmospheric nanoparticle growth. Nat Commun 10, 4442. doi:10.1038/s41467-019-12473-2.

48. Molinier, M., & Antikainen, E. 2019. Unsupervised LSTM-AE and Harmonic Models for Improving Timeliness of Forest Logging Notifications With Dense Satellite Image Time Series. In ESA Phi-Week 2019 European Space Agency ESA.

49. Mäkelä, A., Grönlund, L., Schiestl-Aalto, P., Kalliokoski, T., & Hölttä, T. 2019. Current-year shoot hydraulic structure in two boreal conifers – implications of growth habit on water potential. Tree Physiology. https://doi.org/10.1093/treephys/tpz107

50. Mäki, M. 2019. Volatile organic compound fluxes from northern forest soils. Väitöskirja.

51. Mäki, M., Aalto, J., Hellen, H., Pihlatie, M. & Bäck, J. 2019. Interannual and Seasonal Dynamics of Volatile Organic Compound Fluxes From the Boreal Forest Floor. Frontiers in plant science. 10, 191.

52. Mäki , M. , Aaltonen, H., Heinonsalo, J., Hellén, H., Pumpanen, J. & Bäck, J. 2019. Boreal forest soil is a significant and diverse source of volatile organic compounds. Plant Soil 441:89–110

53. Biogeosciences, 16, 2409–2421.https://doi.org/10.5194/bg-16-2409-2019.

54. Männistö, E., Korrensalo, A., Alekseychik, P., Mammarella, I., Peltola, O., Vesala, T. & Tuittila, E-S. 2019. Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences, 16, 2409–2421.

55. M. Mõttus et al.2019. "Diurnal Changes in Leaf Photochemical Reflectance Index in Two Evergreen Forest Canopies," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 7, pp. 2236-2243

56. Nichol, C.J.; Drolet, G.; Porcar-Castell, A.; Wade, T.; Sabater, N.; Middleton, E.M.; MacLellan, C.; Levula, J.; Mammarella, I.; Vesala, T.; Atherton, J. 2019. Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy. Remote Sens. 2019, 11, 273.

57. Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.

58. Pihlatie, M., Polvinen, T., Kohl L, et al. 2019. Controlled environment chamber system for gas exchange measurements: setup and operating principles. Geophysical Research Abstracts. 2019;21

59. Praplan, A. P., Tykkä, T., Chen, D., Boy, M., Taipale, D., Vakkari, V., Zhou, P., Petäjä, T., and Hellén, H. 2019. Long-term total OH reactivity measurements in a boreal forest, Atmos. Chem. Phys., 19, 14431–14453, https://doi.org/10.5194/acp-19-14431-2019, 2019.

60. Pyörälä, J., Kankare, V., Liang, X., Saarinen, N., Rikala, J., Kivinen, V-P., ... Vastaranta, M. 2019. Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry, 92(2), 177-187. https://doi.org/10.1093/forestry/cpy044

61. Rissanen, K., Hölttä, T.,Barreira, L. F. M., Hyttinen, N., Kurten, T. & Bäck, J. 2019. Temporal and Spatial Variation in Scots Pine Resin Pressure and Composition. Front. For. Glob. Change, 17 May 2019 | https://doi.org/10.3389/ffgc.2019.00023.

62. Riva, M., Heikkinen, L., Bell, D.M. et al. 2019. Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. Clim Atmos Sci 2, 2 (2019) doi:10.1038/s41612-018-0058-0

63. Roldin, P., Ehn, M., Kurten, T., Olenius, T., Rissanen, M. P., Sarnela, N., Elm, J., Rantala, P., Hao, L., Hyttinen, N., Heikkinen, L., Worsnop, D., Pichelstorfer, L., Xavier, C., Clusius, P., Öström, E., Petäjä, T., Kulmala, M., Vehkamäki, H., Virtanen, A. & 2 muuta. 2019. The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications. 10, 15 s. 4370.

64. Ruiz-Jimenez, J., Zanca, N., Lan, H., Jussila, M., Hartonen, K. & Riekkola, M-L. 2019. Aerial drone as a carrier for miniaturized air sampling systems . Journal of Chromatography A, 1597 (2019) 202–208.

65. Ruiz-Pérez, G.; Launiainen, S.; Vico, G. 2019. Role of Plant Traits in Photosynthesis and Thermal Damage Avoidance under Warmer and Drier Climates in Boreal Forests. Forests 2019, 10, 398.

66. Sarnela, N. (2019). From Gas-Phase Oxidation to Nanoparticles - a Mass Spectrometric Approach. Finnish Association for Aerosol Research FAAR. Report Series in Aerosol Science N:o 224. Väitöskirja.

67. Schiestl-Aalto, P., Ryhti, K., Mäkelä, A., Peltoniemi, M., Bäck, J., & Kulmala, L. (2019). Analysis of the NSC Storage Dynamics in Tree Organs Reveals the Allocation to Belowground Symbionts in the Framework of Whole Tree Carbon Balance. Frontiers in Forests and Global Change, 2, [17]. https://doi.org/10.3389/ffgc.2019.00017

68. Seppälä, E.O.J. 2019. Developing a portable methane sampling system for lowconcentration environmental applications. Gradu

69. Shen, Y., Virkkula, A., Ding, A., Luoma, K., Keskinen, H., Aalto, P.P., Chi, X., Qi, X., Nie, W., Huang, X. Petäjä, T., Kulmala, M.& Kerminen, V-M. 2019. Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization. Atmos. Chem. Phys., 19, 15483–15502.

70. Sietiö, O-M., Santalahti, M., Putkinen, A., Adamczyk, S., Sun, H.& Heinonsalo, J. 2019. Restriction of plant roots in boreal forest organic soils affects the microbial community but does not change the dominance from ectomycorrhizal to saprotrophic fungi, FEMS Microbiology Ecology, Volume 95, Issue 9, September 2019, fiz133, https://doi.org/10.1093/femsec/fiz133.

71. Silva, S. J., Heald, C. L., Ravela, S.,Mammarella, I., & Munger, J. W.(2019). A deep learning parameterization for ozone drydeposition velocities. GeophysicalResearch Letters, 46, 983–989.

72. Solanki, T., Aphalo, P. A.aNeimane, S., Hartikainen, S. M., Pieristè, M., Shapiguzov, A., Porcar-Castell, A.,Atherton, J., Heikkilä, A. & Robson, T. M. 2019. UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack. Plant Physiology and Biochemistry 134, January 2019, Pages 40-52.

73. Taipale, U. 2019. CLIMATE WHIRL-Arts at a forestry field station. Geophysical Research Abstracts, 2019

74. Tiusanen, K. 2019. Field and greenhouse studies on BVOC emission patterns from poplars (trembling and hybrid aspen).Gradu.

75. Haijie Tong, Yun Zhang, Alexander Filippi, Ting Wang, Chenpei Li, Fobang Liu, Denis Leppla, Ivan Kourtchev, Kai Wang, Helmi-Marja Keskinen, Janne T. Levula, Andrea M. Arangio, Fangxia Shen, Florian Ditas, Scot T. Martin, Paulo Artaxo, Ricardo H. M. Godoi, Carlos I. Yamamoto, Rodrigo A. F. de Souza, Ru-Jin Huang, Thomas Berkemeier, Yueshe Wang, Hang Su, Yafang Cheng, Francis D. Pope, Pingqing Fu, Maosheng Yao, Christopher Pöhlker, Tuukka Petäjä, Markku Kulmala, Meinrat O. Andreae, Manabu Shiraiwa, Ulrich Pöschl, Thorsten Hoffmann, and Markus Kalberer. 2019. Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology 2019 53 (21), 12506-12518. DOI: 10.1021/acs.est.9b05149

76. Aki Tsuruta, Tuula Aalto, Leif Backman, Maarten C. Krol, Wouter Peters, Sebastian Lienert, Fortunat Joos, Paul A. Miller, Wenxin Zhang, Tuomas Laurila, Juha Hatakka, Ari Leskinen, Kari E. J. Lehtinen, Olli Peltola, Timo Vesala, Janne Levula, Ed Dlugokencky, Martin Heimann, Elena Kozlova, Mika Aurela, Annalea Lohila, Mari Kauhaniemi & Angel J. Gomez-Pelaez (2019) Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system, Tellus B: Chemical and Physical Meteorology, 71:1, DOI: 10.1080/16000889.2018.1565030

77. Tyynelä, J., & von Lerber, A. 2019. Validation of microphysical snow models using in‐situ, multi‐frequency and dual‐polarization radar measurements in Finland. Journal of Geophysical Research: Atmosphere, 124, 13273– 13290. https://doi.org/10.1029/2019JD030721.

78. Vainio, E. 2019. The contributions of soil, ground vegetation and trees to the methane exchange of boreal forest. Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae - URN:ISSN:2342-5431. Väitöskirja.

79. Wouters, H., Petrova, I., van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Teuling, A. J., Meulenberg, V., … Gonzalez Miralles, D. 2019. Atmospheric boundary layer dynamics from balloon soundings worldwide : CLASS4GL v1.0. GEOSCIENTIFIC MODEL DEVELOPMENT, 12(5), 2139–2153.

80. Zhang, C, Atherton, J, Peñuelas, J, et al. 2019. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ. 42: 3264– 3279. https://doi.org/10.1111/pce.13620

81. Zhang, Y., Peräkylä, O.,Yan, C.,Heikkinen, L.,Äijälä, M., Daellenbach, K.R., Zha, Q.,Riva, M.,Garmash, O.,Junninen, H., Paatero, P.,Worsnop, D. &Ehn, M. 2019. A novel approach for simple statistical analysis of high-resolution mass spectra. Atmos. Meas. Tech., 12, 3761–3776. https://doi.org/10.5194/amt-12-3761-2019.

82. Zhao, P., M. Palviainen, K. Köster, F. Berninger, V. J. Bruckman, and J. Pumpanen. 2019. Effects of Biochar on Fluxes and Turnover of Carbon in Boreal Forest Soils. Soil Sci. Soc. Am. J. 83:126-136. doi:10.2136/sssaj2018.04.0149.

83. Äijälä, M. 2019. Statistical analysis of aerosol mass spectra : chemometrics and chemical speciation. Väitöskirja.

84. Äijälä, M., Daellenbach, K. R., Canonaco, F., Heikkinen, L., Junninen, H., Petäjä, T., Kulmala, M., Prevot, A. S. H. & Ehn, M. 2019. Constructing a data-driven receptor model for organic and inorganic aerosol: a synthesis analysis of eight mass spectrometric data sets from a boreal forest site. Atmospheric Chemistry and Physics. 19, 6, s. 3645-3672