The study of microbiome data holds unlimited potential for outlining of the biological and metabolic functioning of living organisms and their role in the environment. With increase in the availability of metagenomic data in this era of Next Generation Sequencing (NGS) when the technologies are becoming cheaper than ever before, we urgently need reliable and comprehensive methods/pipelines for dealing with such data. Here we present a novel stand-alone pipeline called the LAZYPIPE for identifying viruses and bacteria in host-associated and environmental samples.
Lazypipe can be quickly assessed using a
To start Lazypipe on CSC Puhti type:
module load r-env-singularity biokit lazypipe
sbatch-lazypipe
All code and updates are freely available at
User guides and Exercise modules are available at
Lazypipe releases v1.0 and v1.1 were benchmarked against three other software packages for taxonomic profiling. Benchmarking was performed with both simulated and real data. For a quick summary see our
Results for OPAL evaluation of Lazypipe v1.1, Kraken2, MetaPhlan2 and Centrifuge on the MetaShot simulated metagenome are available here: (1)
Lazypipe v1.1 benchmarking on the mock-community data is available here: (3)
Lazypipe v2.1 benchmarking on MetaShot simulated metagenome against Lazypipe v1.0, Kraken2, CZID and Genome Detective was published in (
Lazypipe v2.1 benchmarking on Canine Simulated Metagenome was published in (
[1] Ilya Plyusnin, Ravi Kant, Anne J. Jaaskelainen, Tarja Sironen, Liisa Holm, Olli Vapalahti, Teemu Smura. (2020) Novel NGS Pipeline for Virus Discovery from a Wide Spectrum of Hosts and Sample Types. Virus Evolution, veaa091,
[2] Plyusnin, I., Vapalahti, O., Sironen, T., Kant, R., and Smura, T. (2023). Enhanced Viral Metagenomics with Lazypipe 2. Viruses 15, 431.