Monte Carlo-simuloinnit / Monte Carlo simulations

Monte Carlo-simuloinnit, 2+2 ov (4+4 op) / Monte Carlo simulations, 2+2 sw (4+4 op)

  • Newer version of course


    Course materials by Kai Nordlund, spring 2006 and earlier


    Huom. Vuodesta 2005 alkaen kurssi on jaettu kahteen osaan:
    • 530119 Monte Carlo-simulointien perusteet, 2 ov, 4 op
    • 530153 Monte Carlo-simuloinnit fysiikassa, 2 ov, 4 op
    Edellinen on suunnattu kaikille matemaattis-luonnontieteellisille tieteille, jälkimmäinen lähinnä fyysikoilla ja kemisteille. Kurssit luennoidaan joka toinen vuosi. Opinto-oppaassa 2005-2006 oli virhe opintopisteiden suhteen, oikea määrä on 4 op/osakurssi.

  • Course names in English:
  • Kursnamn på svenska:

    Timetable

    Date What? Date What?
    Tue 17.1 Lecture 1 Thu 19.1 -
    Tue 24.1 Lecture 2 Thu 26.1 -
    Tue 31.1 Lecture 3 Thu 2.2 Exercise 1
    Tue 7.2 Lecture 4 Thu 9.2 Lecture 5
    Tue 14.2 Lecture 6 Thu 16.2 Exercise 2
    Tue 21.2 - Thu 23.2 Lecture 7
    Tue 28.2 Lecture 8 Thu 2.3 Exercise 3
    Tue 7.3 Exercise 4 Thu 9.3 -
    Tue 14.3 MC part 2 lecture 1 Thu 16.3 Exam for MC part I
    Tue 21.3 Lecture 2 Thu 23.3 -
    Tue 28.3 Lecture 3 Thu 30.3 Exercise 5
    Tue 4.4 Lecture 4 Thu 6.4 Lecture 5
    Tue 11.4 Lecture 6 Thu 13.4 - (easter)
    Tue 18.4 Exercise 6 Thu 20.4 Lecture 7
    Tue 25.4 - Thu 27.4 Exercise 7
    Tue 2.5 - Thu 5.4 Exercise 8

    Exam for part I was Thursday Mar 16 10.00-14.00 in the Accelerator lab.


    Lectures

    I will try to put out the lecture notes here at least one day before the lecture. After the lecture I may still correct errors and put a new version here 'for the record'.

    Part I

  • 1. General information = this web page.
  • (2. skipped)
  • [PDF] 3. History, definition.
  • [PDF] 4. Generating random numbers
  • [PDF] 5. Monte Carlo integration
  • [PDF] 5. The Markov Chain Monte Carlo method
  • [PDF] 6. MC data analysis
  • [PDF] 11. Cellular automata

    Part II

  • [PDF] 7. Random walks
  • [PDF] 8. Kinetic Monte Carlo
  • [PDF] 9. MC simulation of thermodynamic ensembles
  • [PDF] 10. Simulated annealing
  • [PDF] 10b. Quantum Monte Carlo

    Exercises

    To be handed in by email to the course assistant, eero.kesalahelsinki.fi

    Part I

  • PDF PS Exercise 1: random number generators
  • PDF PS Exercise 2: tests, nonuniform random numbers, presidential elections
  • PDF PS Exercise 3: MC integration
  • PDF PS Exercise 4: MCMC, synthetic data

    Part II

  • PDF PS Exercise 5: random walks
  • PDF PS Exercise 6: kinetic Monte Carlo
  • PDF PS Exercise 7: Ising model
  • PDF PS Exercise 8: Traveling salesman
  • PDF PS Exercise X (bonus): Sudoku

    Exercise solutions

    Exercise web page

    List of contents: "Basics of MC"

    1. Introduction (1/2 hours)
      • Times, lectures, exercises

    2. Monte Carlo - introduction (1 hour)

      • Definition
      • History: first MC simulation
      • Confusing terminology, and trying to avoid it
      • Even most MD is sort of MC!
      • List of some varieties of MC

    3. Generating random numbers (4 hours)
      • Importance of doing this well
      • Testing generators: 2D, MC simulation, etc...
      • Generating a uniform distribution
      • Generating non-uniform distributions
        • Analytical approach
        • von Neumann rejection method
        • Special case: Gaussian distribution
      • Generating points on a surface of a sphere: the infamous pitfall
      • Non-random random numbers: these may sometimes be better

    4. Monte Carlo integration (2-3 hours)
      • MC integration of many-dimensional functions
      • When is this advantageous compared to a grid?
      • Weight functions

    5. MC simulation of experimental data (2 hours)
      • Quick-and-dirty: the bootstrap method
      • Test: how good is this actually?
      • Simulation of physical process

    6. Cellular automata (2-4 hours)
      • Basic concepts
      • Numerical rule schemes
      • Applications: sand piles, forest fires etc.

    List of contents: MC simulations in physics

    1. Random walks: introduction (2 hours)
      • Drunken sailor in 1 and 2D
      • Relation to diffusion
      • Lattice gas
      • Length of polymers

    2. Kinetic Monte Carlo (2 hours)
      • Motion of activated objects
      • Trivial and residence-time algorithm
      • Lattice and non-lattice
      • Example: defect migration in Si

    3. MC simulation of ensembles (4 hours)
      • MC and statistical physics
      • Simulating atomic systems
      • Metropolis algorithm: NVT
      • Demon algorithm: NVE
      • NPT and muPT algorithms
      • Calculating thermodynamic quantities

    4. Simulated annealing (1 hour)
      • Basic idea: Metropolis + T lowering (as in metals annealing)
      • example: Annealing a metal
      • example: Traveling salesman problem
      • Exercise: solve the salesman problem
    5. Quantum Monte Carlo
      • Variational principle
      • Model case: particle in a box
      • Random Walk QMC

      Time permitting and according to attendees interests possibly also some of the following:

    6. Ising model (1-2 hours) ?
      • Definition of problem, algorithm
      • Computer code

    7. Solving equations (2-6 hours) ?
      • Linear sets of equations
      • Integral equations

    8. Transport simulations (4-8 hours) ?
      • Relation to radiation effects
      • Simulating ionic collisions

    Sisältökuvaus: osa 1

  • Opetusajankohta: kl. 2006 ti, to 10-12 (luennot pääasiassa tiistaisin, laskuh. torstaisin) 17.1-2.3. Ensimmäinen luento Ti 17.1.

  • Paikka: Kiihdytinlaboratorion seminaarihuone (Pietari Kalmin katu 2)

  • Luennoija: Prof. Kai Nordlund
  • Assistentti: Eero Kesälä

  • Laajuus: 2 ov, 4 op

  • Kesto: 7 viikkoa

  • Ajankohta opintojen ajoitusmallissa: cum laude tai erikoistumisvaihe

  • Esitiedot: Matematiikka. Fortran-, C- tai java-kielen perusteiden tuntemus.


  • Simple forest fire MC simulation

  • Sisältö (osa 1):

    Kurssilla käsitellään useilla luonnontieteen aloilla hyvin tärkeiden Monte Carlo-simulointimenetelmien perusteita. Kurssilla käsitellään satunnaislukujen generointia eri jakaumissa, Monte Carlo-integrointia ja sen virhelaskentaa, synteettisen datan generointia sekä soluautomaatteja

  • Suoritustapa:

    Lasku/ohjelmointiharjoitukset ja loppukoe.

  • Kirjallisuus:

    Luentomonisteet.

    Tukena voi käyttää useitakin kirjoja, kts. englanninkielinen osuus alla.

  • Kommentteja:

    Kurssi pidetään englanniksi pyydettäessä. Laskuharjoituksiin ja kokeisiin voi vastata suomeksi, ruotsiksi tai englanniksi.


    Description: part 1 "Basics of Monte Carlo simulations"

  • Lecturing time: spring 2006: Tue, Thu 10-12 (lectures primarily on Tuesday, exercises on Thursdays) 17.1-2.3. First lecture 17.1.

    Description: part 2 "Monte Carlo simulations" in physics

  • Lecturing time: spring 2006: Tue, Thu 10-12 (lectures primarily on Tuesday, exercises on Thursdays) 14.3- First lecture 14.3

  • Place: Kiihdytinlaboratorion seminaarihuone (Pietari Kalmin katu 2)

  • Lecturer: Prof. Kai Nordlund
  • Assistant: Eero Kesälä

  • Extent of course: 2 sw

  • Duration: 7(8) weeks

  • Normal year to be taken: specialization phase, third year and up.

  • Prerequisites: Mathematics. Knowledge of the Fortran, C or java programming language.

  • Language of instruction: English, or Finnish if everyone understands Finnish. The exercises and exams can in any case be solved in Finnish, Swedish or English.

  • Course description:

    During the course we will give an introduction to the so called Monte Carlo simulation methods which are very important in many branches of modern science.

  • Exercises

    Programming and mathematical exercises are given during the course, but not every week. They are graded by the lecturer For the more demanding exercises more than 1 week of solution time is given.

    The programming exercises should be preferably solved in an Unix environment, but also solutions written under other environments in strict adherence to the Fortran90, ANSI C or java standards (so that they can be compiled anywhere) are acceptable.

  • Evaluation:

    Exercises (50 %)
    Final exam (50 %)

  • Literature:

    Lecture notes.

    Some parts of the material are well described in

    but acquiring any of these is not necessary for the course.


    Taustatietoa/Background information

  • Course material from 2002
  • Course material from 2004
  • Course material from 2005 (part I only)

  • Metropolis MC code for Morse Cu

  • Similar course by Zoltan Neda
  • Veikko Karimäen aiemman vastaavan kurssin materiaalia
  • Antti Kurosen aiemman vastaavan kurssin materiaalia
  • David Ceperleys note on QMC

  • Ilpo Vattulainen: Studies of Random Numbers
  • The RANMAR generator
  • The Mersenne twister pages
  • HAVEGE: HArdware Volatile Entropy Genertator

  • Volume of n-Spheres

  • Ising model java applet (with good comments on science)

  • Cellular automata animations (CSC)
  • Game of life java applet
  • Xtoys as xtoys.tar package
  • Stephen Wolfram's book on CA's
  • Numerical recipes online
  • Gould and Tobochnik book:related material; see especially list of errors!
  • Rand Corp's one million random digits
    Kai Nordlund