
11. Cellular automata

[Gould-Tobochnik 15, Tapio Rantala’s notes; http://www.wolframscience.com/; http://www.stephenwolfram.com/publications/books/ca-

reprint/contents.html]
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11.1. Basics

Cellular automata (“soluautomaatit’ in Finnish) were invented and first used by von Neumann and

Ulam in 1948 to study reproduction in biology. They called the basic objects in the system cells due

to the biological analogy, which lead to the name “cellular automaton”.

• Nowadays cellular automata are used in many other fields of science as well, including

physics and engineering, so the name is somewhat misleading.

• The basic objects used in the models can be called both “sites” or “cells”, which usually

mean exactly the same thing.

• The basic idea in cellular automata is to form a discrete “universe” with its own (discrete)

set of rules and time determining how it behaves.

– Following the evolution of this, often highly simplified, universe, then hopefully enables

better understanding of our own.

11.1.1. Formal definition

A more formal definition can be stated as follows.
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1◦ There is a discrete, finite site space G

2◦ There is a discrete number of states each site can have P

3◦ Time is discrete, and each new site state at time t + 1 is determined from the system state

G (t)

4◦ The new state at t + 1 for each site depends only on the state at t of sites in a local

neighbourhood of sites V

5◦ There is a rule f which determines the new state based on the old one

To make this more concrete, I’ll give examples of some common values of the quantities.

• The site space G is often just a 1-dimensional or 2-dimensional set of points.

• The state space P is often just a few integers, in the binary case simply “0” or “1”.

– The number of possible states is often denoted with k, so for binary state spaces

k = 2.

• The neighbourhood V can be just the nearest neighbours plus the state itself. For

instance, in 1D it is then just “left”, “same” and “right”.
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What the rules can be will become clear in the next section.

Note that in this definition, there is nothing really about randomness, so one might question whether

CA’s belong to an MC course. However,

• The starting state and/or rule is often chosen in random, and sometimes the rule itself

has randomness in it.

• Many cellular automata resemble (or are) lattice models which are also often treated with

MC.

• Besides, CA’s are sort of fun.

For these reasons we do treat them on this MC course.

11.1.2. One-dimensional automata

The simplest one-dimensional automata are those where the state space is binary and the local

neighbourhood is limited to nearest-neighbours.

The rule could be something like “if left or right is 1, new state is 1; otherwise it is zero”. But a
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little bit of thought reveals that it is in this case quite easy to systematically consider the rules in

this case.

11.1.2.1. Systematic stating of rules

In the nearest-neighbour model, there are actually only 23 = 8 different configurations of neighbours

and the site itself which lead to the outcome. These are:

111 110 101 100 011 010 001 000

For each of these 8 states, there are 2 possible outcomes: 0 or 1. Hence the total number of

possible rules is 28 = 256. For instance, the rule mentioned above would be

t: 111 110 101 100 011 010 001 000

t + 1: 1 1 1 1 1 0 1 0

This kind of rule can be called “rule 11111010”. Or if we read the string “11111010” as a binary

number, we get simply “rule 250” because 128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = 250.

This type of rule notation is the most general kind imaginable, and hence is called general rule.

This CA can easily be generalized.

• Instead of considering only nearest neighbours, one can consider neighbours up to a radius

r.
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– This strongly increases the number of possible outcomes and the number of general

rules.

– But this can be reduced by making some reasonable assumptions.

- First, we assume the rule is symmetric about the middle point (i.e. for r = 1 f(abc) = f(cba)).

- Second, we assume that f(0) = 0 for any r.

- Third, we assume that the outcome only depends on the sum of the states in the neighbourhood.

(i.e. for r = 1 e.g. f(110) = f(101) = f(011)).

These kinds of rules can be labeled as follows:

rule =
X
m

am2
m

where m is the sum of the states in the neighbourhood (including the site itself). Then

am = 0 if the outcome is 0 for the sum m

am = 1 if the outcome is 1 for the sum m

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 6



The above general rule does not fulfill this stricter set of criteria: But consider now (still for r = 1)

the following general rule:

t: 111 110 101 100 011 010 001 000

t + 1: 0 0 0 1 0 1 1 0

This would be “rule 22” (because 21 + 22 + 24 = 22) in the general rule notation. In the latter

notation, we see that the possible sums are 0, 1, 2 and 3. Now we have

am = 1 for m = 1, 0 otherwise.

So this would be “rule 2” (because 21 = 2) in the latter notation. This notation is called an outer
totalistic rule (just a totalistic rule is one which does not depend on the value of the site itself).

• Actually, this is a restricted variety of outer totalistic rules, since it depends

only on the sum of the site and its neighbours, not separately on the two.

[http://www.stephenwolfram.com/publications/articles/ca/85-two/2/text.html].

Does this sound confusing? Well, it is a bit confusing, there are many different rule notations, and

in reading the literature one has to make sure one knows which kind of rule is meant in each case.

We will only mention general and outer totalistic rules.

11.1.2.2. Implementing the 1D r = 1 automaton.
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Let us see what this produces. Coding something like this is quite easy of course. In the 1D

examples, we can easily do without graphics, just printing the outcome of each line to standard

output. Here is the code from Gould and Tobochnik (changed to C, and graphics commands

removed):

// PROGRAM ca1
// one-dimensional Boolean cellular automata

int main();
void setrule(int update[]);
void initial(int site[], int *L, int *tmax);
void iterate(int site[], int L, int update[], int tmax);
#define MAXWIDTH 1600
int main()
{

int L, site[MAXWIDTH], tmax, update[8], Itmp1_;

for(Itmp1_ = 0; Itmp1_ < MAXWIDTH; ++Itmp1_)
site[Itmp1_] = 0;

setrule(update);
initial(site, &L, &tmax);
iterate(site, L, update, tmax);

}
void setrule(int update[])
{
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int bit0, bit1, bit2, i, rule;

rule=90;
printf("rule number = %d\n", rule);
for(i = 7; i >= 0; --i) {

update[i] = (rule >> i); // find binary representation
rule = rule - (update[i] << i);
bit2 = i/4;
bit1 = (i - 4*bit2)/2;
bit0 = i - 4*bit2 - 2*bit1;
// show possible neighborhoods
printf("%1d %1d %1d ", bit2, bit1, bit0);
printf(" ");

}
printf("\n");
for(i = 7; i >= 0; --i) {

printf(" %2d ", update[i]); // print rules
printf(" ");

}
printf("\n");

}
void initial(int site[], int *L, int *tmax)
{

(*L) = 60;
(*tmax) = 100;
site[(*L)/2] = 1; // center site
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}
void iterate(int site[], int L, int update[], int tmax)
{

int i, index, sitenew[MAXWIDTH], t, Itmp1_;

// update lattice
// need to introduce additional array, sitenew, to temporarily
// store values of newly updated sites
for(t = 1; t <= tmax; ++t) {

for(i = 1; i <= L; ++i) {
index = 4*site[i - 1] + 2*site[i] + site[i + 1];
sitenew[i] = update[index];
if(sitenew[i] == 1) printf("X");

else printf(".");
}

printf("\n");
for(Itmp1_ = 0; Itmp1_ < MAXWIDTH; ++Itmp1_)

site[Itmp1_] = sitenew[Itmp1_];
site[0] = site[L]; // periodic boundary conditions
site[L + 1] = site[1];

}
}

So here periodic boundary conditions are used, and the former notation for the rules. The program

is available on the course web page (both in C and Fortran).
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11.1.2.3. Outcomes of the 1D automata

If we now run this, starting from a random configuration, we get e.g. the following pattern:

X.XXXXXX...XXX..X.XX.....XX.X..X...X.....XXX..XXXXX...X...X.
X.......X.X...XXX...X...X...XXXXX.XXX...X...XX.....X.XXX.XX.
XX.....XX.XX.X...X.XXX.XXX.X.........X.XXX.X..X...XX........
..X...X......XX.XX.........XX.......XX.....XXXXX.X..X......X
XXXX.XXX....X.....X.......X..X.....X..X...X......XXXXX....XX
........X..XXX...XXX.....XXXXXX...XXXXXX.XXX....X.....X..X..
.......XXXX...X.X...X...X......X.X..........X..XXX...XXXXXX.
......X....X.XX.XX.XXX.XXX....XX.XX........XXXX...X.X......X
X....XXX..XX..............X..X.....X......X....X.XX.XX....XX
.X..X...XX..X............XXXXXX...XXX....XXX..XX......X..X..
XXXXXX.X..XXXX..........X......X.X...X..X...XX..X....XXXXXX.
.......XXX....X........XXX....XX.XX.XXXXXX.X..XXXX..X.......
......X...X..XXX......X...X..X.............XXX....XXXX......
.....XXX.XXXX...X....XXX.XXXXXX...........X...X..X....X.....
....X........X.XXX..X..........X.........XXX.XXXXXX..XXX....
...XXX......XX....XXXX........XXX.......X..........XX...X...
..X...X....X..X..X....X......X...X.....XXX........X..X.XXX..
.XXX.XXX..XXXXXXXXX..XXX....XXX.XXX...X...X......XXXXX....X.
X.......XX.........XX...X..X.......X.XXX.XXX....X.....X..XXX
.X.....X..X.......X..X.XXXXXX.....XX........X..XXX...XXXX...
XXX...XXXXXX.....XXXXX.......X...X..X......XXXX...X.X....X..
...X.X......X...X.....X.....XXX.XXXXXX....X....X.XX.XX..XXXX
X.XX.XX....XXX.XXX...XXX...X..........X..XXX..XX......XX....
X......X..X.......X.X...X.XXX........XXXX...XX..X....X..X..X
.X....XXXXXX.....XX.XX.XX....X......X....X.X..XXXX..XXXXXXX.
XXX..X......X...X........X..XXX....XXX..XX.XXX....XX.......X
...XXXX....XXX.XXX......XXXX...X..X...XX......X..X..X.....X.
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..X....X..X.......X....X....X.XXXXXX.X..X....XXXXXXXXX...XXX
XXXX..XXXXXX.....XXX..XXX..XX........XXXXX..X.........X.X...
....XX......X...X...XX...XX..X......X.....XXXX.......XX.XX.X
X..X..X....XXX.XXX.X..X.X..XXXX....XXX...X....X.....X......X
.XXXXXXX..X........XXXX.XXX....X..X...X.XXX..XXX...XXX....X.
X.......XXXX......X........X..XXXXXX.XX....XX...X.X...X..XXX
.X.....X....X....XXX......XXXX.........X..X..X.XX.XX.XXXX...
XXX...XXX..XXX..X...X....X....X.......XXXXXXXX...........X..
...X.X...XX...XXXX.XXX..XXX..XXX.....X........X.........XXXX
X.XX.XX.X..X.X........XX...XX...X...XXX......XXX.......X....
X.......XXXX.XX......X..X.X..X.XXX.X...X....X...X.....XXX..X
.X.....X.......X....XXXXX.XXXX.....XX.XXX..XXX.XXX...X...XX.

Note that even though we start from a completely random configuration, a clear fractal-like pattern

soon emerges.

The 256 binary r = 1 CA’s have actually all been examined and the behaviour

analyzed, by Stephen Wolfram (the same person who is behind Mathematica) among

others. See http://www.stephenwolfram.com/publications/articles/ca/86-caappendix/3/text.html

or http://www.wolframscience.com/nksonline/page-53 for a complete list.

11.1.2.4. Classification of CA’s

The long-term behaviour of the binary cellular automata can be classified as follows:
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1◦ A homogeneous state where every site is either 0 or 1 (i.e. same everywhere. This can be

e.g. a self-extinguishing or self-filling pattern. For r = 1 the general rules “0” and “255”

obviously belong here, since they either empty or fill space immediately

2◦ Patterns consisting of separate stable or regions periodic in time. In these the initial state

quickly evolves into a single pattern which then stays unmodified, or switches back-and-forth

between two states

3◦ Propagating patterns which increase in size as time advances, which are not periodic in

time. These have chaotic properties, i.e. the prediction of the value of a site at infinite time

would require knowledge of an infinite number of initial site values.

4◦ Complex, localized structures which may take on very complex shapes, but may not exist

forever.

For r = 1 there are no automata of the most interesting type 4. For r = 2 there are.

Here are a few examples clarifying what classes 2-4 can be like:
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It turns out that even for these seemingly trivial 1D automata, some of the class 4 automata may

take on amazingly complex shapes (see figure below).

In fact the basic k = 2, r = 1 rule 110 has so called universal computing behaviour
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[http://www.wolframscience.com/nksonline/page-676-text]. What this means will be discussed for 2D automata

in the next section.

11.1.3. Two-dimensional automata

Even though complex shapes do emerge from the 1D automata, they seldom have true aspects
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of evolution and self-organization, and hence are finally not that interesting in terms of studying

complexity. This changes completely when we go up to 2 dimensions.

In two dimensions, the number of possible automata of course goes up into huge numbers. But if

we only consider nearest-neighbour automata, and only use the totalistic sum rule, the number of

automata to consider remains manageable.

These automata can be described with rules just as the 1D ones. The general rule for outer totalistic

automata with k states is

C̄ =

k−1X
a=0

nnX
m=0

f̄(a, m)k
km+a

where m is again the sum of the states in the neighbourhood, now excluding the site itself. nn is

the total number of possible sites in the neighbourhood. f̄(a, m) is the new state of the site and

a loops over the possible previous states.

• Note that by introducing the state of the site itself a explicitly into f it is possible to

have different outcomes depending on whether the site was previously on or off.

11.1.3.1. The game of life

The by far most famous cellular automaton is the “Game of life”. It was originally devised by John

Conway in 1970, more or less as a solitaire game.
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• However, it turned out to produce amazingly complex patterns, and has since then been

the focus of much serious research

– Although it certainly has also been the focus of countless high-school kids fooling

around with a computer.

The rules of the game are simple.

Consider a quadratic board where every square can be alive or dead (1 or 0). The next state is

determined from the state of the 8 neighbours as follows.

1◦ If the site is dead:

1 a◦ It becomes alive if it has exactly 3 live neighbours

1 b◦ Otherwise it stays dead

2◦ If the site is alive:

2 a◦ It dies due to isolation if it has less than 2 live neighbours

2 b◦ It stays alive if it has exactly 2 or 3 live neighbours

2 c◦ It dies due to overcrowding if it has more than 3 live neighbours

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 17



These rules correspond to C̄ = 224.

I will just give two simple examples of the outcome here. One is how four “blinkers” evolve starting

from a cross:

Can you follow how this outcome derives from the rules?

Another classic is the walker:
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So you see that this thing keeps on returning to its original shape, but has moved one step in x and

another in y before doing so.

If you like to see more of this stuff, you can play around with the java applet in

http://www.ibiblio.org/lifepatterns/ . The “A-plus” starting pattern shows a wide range of

objects, like a wire creator, a walker creator, objects moving at different speeds, things exchanging

objects, an immobile sink of some of the moving objects and so on.

But the most amazing feature of the “Game of life” is that it has been shown that all of the

basic components of a computer can be constructed in it: analogies to wires, memory, and the

logical circuits (AND, OR etc.). This means that a “universal computer” (Turing machine) can

be constructed in the game of life. Since precent-day computers are based on the ideas of Turing

machine, this means that the logic circuits of any present-day computer could be reproduced in the

game of life.

This was actually shown long ago, in 1982 or before, by showing how all the individual components

could be made up. In 2000, Paul Rendell actually constructed such a machine, a working Turing

machine with 3 states and 3 symbols. Here is the starting design:
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This design takes 11040 life generations to do a single cycle of the computer. So from a practical
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viewpoint this thing is not exactly a very efficient way to build a computer. Still, as a concept it is

quite fascinating.

There have actually been real computers which are based on cellular automata. In the 1980’s

Thinking machines corp. built the “Connection Machine” which was based on 1-bit processors

which where physically connected to form a cellular automaton. It was also one of the first

commercial parallel computers.

• By now the company has gone bankrupt, which shows that cutting-edge research does not

necessarily lead to good business...

Maybe the greatest importance of this kind of cellular automata is that they nicely illustrate how

some extremely simple rules (like the ones in the game of life) can be used to produce a system

with very complex behaviour.

From a science philosophy point of view, this gives some hope for us physicists that some truly

simple and elegant “theory of everything” describing the whole universe does actually exist and

could one day be found.
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• Stephen Wolfram actually thinks that the cellular automata framework of thinking could

be the path which leads to the theory of everything, but this idea is not exactly shared by

the wider physics community...

– He also argues that reality is often so complicated that often the best tool to describe

it are computer simulations and not analytical mathematics. For 1D automata this

can be exemplified by the fact that it is impossible to predict the exact state of 1D

automata after N iterations without running the whole simulation.

• This notion has in part been disputed in [N. Israeli and N. Goldenfeld Phys. Rev. Lett.

92, 074105], who showed that it is possible to do an analytical prediction of the overall

state of 1D automata, where the details are fuzzed out. They argue that in many physical

systems the details are unimportant in any case, hence justifying the use of analytical

mathematics [http://focus.aps.org/story/v13/st10]
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11.2. Applications in natural sciences and engineering

As has become clear from the above, much of the interest to cellular automata comes from computer

science and the study of complex phenomena and chaos. But there are important applications in

natural science as well, some of which we will now mention.

11.2.1. The Ising model

The Ising model describes the energy of a spin system as a sum of nearest-neighbour spins,

E = −J

NX
i,j=nn(i)

sisj (1)

The Ising model can be simulated in a number of ways, the most common of which are Kinetic

Monte Carlo and Metropolis MC, to be treated later on during this course.

It turns out that it can further be simulated as a cellular automaton as well.

The basic relation with cellular automata is clear: the 2D lattice forms directly the CA set of cells.

Now the neighbours considered are the 4 nearest neighbours.
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In the CA application of the Ising model, the energy of the entire lattice is fixed, and a spin flips

only if the total energy is not changed.

• This is the case if a spin has 2 up and 2 down neighbours: then a spin flip will not change

the total energy. In this case, a flip is always performed.

In CA, we always want to update all neighbours simultaneously.

• This leads to a problem: if two neighbouring spins of opposite sign both have a total of

2 up neighbours, then switching the spin of these two would lead to a change in total

energy.

• To overcome this problem, one can divide the board into a chessboard pattern. Then one

first updates the white squares all simultaneously, and after this the black squares. Since

no white and black square on a chess board ever are adjacent, this will overcome the

problem mentioned above.

An interesting feature about this CA implementation of the Ising model is that it is not ergodic:

there are some states with the same energy which will never be reached for a given initial condition.

This can be seen e.g. by considering the minimal 2 × 2 lattice with periodic boundaries. Arrange

the spins as
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+ –

+ –

and the system will, when we first flip 1/2 of the states, go to

– –

+ +

and then to

– +

– +

which is the end result for the first update. The next sequence will return to the original state.

Hence the state

+ +

– –

which obviously has the same energy as the original one, will never be reached (unless we count the

intermediate ’half’ states, which we should not).

To overcome the ergodicity problem, one can e.g. bend the rules a bit:
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• Allow with a small probability a randomly chosen spin to swap state regardless of its

neighbourhood, selecting the probabilities so that the total energy will still on average be

the desired E0.

• Hence we still effectively conserve the energy E within some small fluctuation interval

δE, but overcome the barrier problem.

11.2.2. Modeling fluid flow

[GT 15.2. But see also e.g. http://www.santafe.edu/ shalizi/reviews/rothman-zaleski-on-lga/]

One of the most important applications of CA’s in science today is fluid flow. Simulating fluid flow

is very difficult because the basic equation governing it, the Navier-Stokes differential equation, is

nonlinear.

• Moreover, in practical simulations one often wants to deal with systems which have many

length scales, and involve complex shapes with obstacles, etc. All of this makes direct

solution of the equations complicated.

– Nevertheless, there are of course numerous codes to do this.
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Cellular automata offer another route to simulating fluid flow. The CA model for fluid flow is a

lattice gas model.

• This means that the particles are restricted to the site of a lattice, and the velocities are

also restricted to a small number of velocity vectors.

For fluid flow, the CA modeling starts from the idea that if we maintain the conservation laws and

symmetries associated with the fluids in a microscopic, simplified picture, then one can reproduce

the correct macroscopic physics as an average of a large number of microscopic particles.

In the CA model, a triangular lattice is used, since this can describe the continuum symmetry, which

a simple square model could not.

• The possible velocity vectors are the 6 vectors which link nearest-neighbour sites in the

lattice.

– In the model we describe, rest particles are not allowed.

• A site in the lattice can be occupied by 0-6 particles, so that the site can contain at most

one particle moving in a given direction.

The simulation proceeds by first moving the particles by their current velocity vector.
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• Then it considers all particles at a given site, imagining that this is a particle collision.

• A set of predetermined rules tells what the outcome (i.e. the new velocity vectors) are

after a collision.

• These rules are formulated so that they fill the required conservation laws. The possible

collisions and their outcomes can be graphically illustrated as follows:
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What does this mean? For instance, in the left upper corner the arrows linking 52 and 25 show that

state 52 goes to state 25 on collision, and vice versa.

• The numbers refer to a bitwise encoding of the possible collisions, which we will not

present here (see Gould-Tobochnik if interested).
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• In all cases we see that the number of particles in and out of a state is conserved, which

means that we do have mass conservation.

• That the system otherwise behaves as a fluid is not as obvious, but has been proven (by

Uriel Frish, Brosl Hasslacher, and Yves Pomeau in 1985, and independently somewhat

later by Stephen Wolfram, who even patented the whole concept of lattice gases).

• One great advantage with the approach is that encoding one point in space requires at

minimum only 6 bits of information, much less than in any other method.

– This enables using very large systems.

– On the other hand, since macroscopically meaningful information can be obtained only

as the average of a large number of points, a large system is always needed.

For an example on how this behaves on a larger scale see http://www.wolframscience.com/nksonline/page-

378 and on.
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How useful has this really been? Since I am no expert myself on fluids, I give a direct citation from

an expert in the field [http://www.santafe.edu/ shalizi/reviews/rothman-zaleski-on-lga/]

“Since the mid-1980s, however, the limitations of lattice gases have become clearer, and early hopes

that they would let us crack the problem of turbulence, for example, have been dashed.

Lattice gas have by no means however proven useless; in fact, they have many applications,

especially to situations where we face messy boundary conditions, irregular obstacles in the way of

the flow, or more than one type of fluid. This covers a lot; in particular, the petroleum industry is

very interested in how to force oil out of rock. But there are many other important applications,

too, having to do with pattern formation, and even to straight-forward fluid flow when the Reynolds

number (a kind of ratio of inertia to viscosity) is not too large. ”

11.2.3. Self-organized critical phenomena

Consider very large-scale events which occur very rarely. Such events can be e.g. earthquakes,

avalanches, or a stock-market crash.

Large-scale events can of course be triggered by some very strong forces, or special out-of-the-

ordinary events which normally never occur.

However, it could be they are also triggered by some very ordinary minor event which happens all
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the time, but sometimes triggers a large-scale effect for some reason. The study of self-organized
criticality deals with trying to understand the latter variety of events.

Out of the examples mentioned above, we know that at least avalanches and stock-market crashes

can be triggered by both kinds of events.

• An avalanche can be triggered intentionally by e.g. explosives placed in the right spot, and

the (minor) stock-market plunge after Sep 11, 2002, clearly was triggered by the actions

of a few ruthless terrorists/valiant freedom fighters/misunderstood youths (Western/Arab

nationalist/Swedish social democratic world view).

On the other hand, we know that some avalanches start completely on their own with no major

disturbance. For instance, no single clear-cut out-of-the-ordinary trigger for the stock-market plunge

of 1987 has been found.

More scientifically, a system is said to be critical if the number of events N(s) follows a power law:

N(s) ∝ s
−α

(2)
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• Compare this to the result of combining a large number of independently acting events.

The central limit theorem shows that the probability distribution for an event to occur

becomes a Gaussian, i.e.

N(s) ∝ e
−(s/s0)2

These two kinds of behaviour differ in that the critical behaviour does not have a characteristic

length scale, i.e. is scale invariant. This means that if we change the length scale by s → bs, we

get

N
′
(s) ∝ (bs)

−α ∝ b
−α

s
−α ∝ s

−α

i.e. only the prefactor changes, but not the slope of the function.

In the Gaussian on the other hand, plugging in bs changes the s0 factor in the exponential to s0/b,

i.e. s0 gives a characteristic length scale.

• A practical important difference is that because an exponential form always approaches

zero faster than any power law with a constant exponent α, a Gaussian form gives virtually

no events for large s, whereas the power law tends to give a few even for very large s.

11.2.3.1. Simulation of a sand pile

The perhaps most commonly cited example of a self-organized critical phenomenon is a sand pile.

Consider grains of sand falling on a flat square with open edges. Initially the grains which land, will
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stay at their initial positions. But as the pile keeps growing, the system will end up with steep,

unstable slopes which will collapse downwards in small sand avalanches.

• From our everyday experience we know that the sand will eventually reach a steady-state

shape close to that of a cone, which is stabilized by small avalanches which take away the

additional grains which fall in.

• This system is critical because (once steady-state is reached) there will be avalanches of

all sizes, up to the whole size of the system.

• The system is also self-organized, because no kind of processing (temperature, pressure

or the like) is needed to get the system to its steady-state configuration.

Doing sand pile experiments is of course easy, every one of us has done that in our childhood.

• But in case we want to obtain a deeper understanding of the avalanching phenomena,

how should we deal with this situation theoretically?

– This variety of problems (which has many other examples with clearer economic

interest) has not been studied long, and is in fact very difficult to deal with analytically.
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Cellular automata have turned out to be extremely useful for studying this kind of problem, since

quite simple rules often can lead to the right kind of behaviour.

A maximally simple model of a sand pile is as follows.

Consider a 1D system with L sites 1, . . . , L. Let the height of each site be h(i).

1◦ Add a grain to the left-most site: h(i) = h(i) + 1

2◦ For all sites i, if h(i)− h(i + 1) > 1 mark the site for toppling

3◦ Topple all marked sites to the right using h(i) = h(i)−1 and h(i+1) = h(i+1)+1

4◦ Set h(L+1)=0, i.e grains beyond L are lost forever

5◦ If any sites were toppled, return to step 2

6◦ Return to step 1
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Note that the sand keeps toppling until a steady configuration is reached at each time step, which

is intuitively a fairly natural behaviour.

This model here is actually not yet very interesting: after it has reached the steady state (which is

just a pile with exactly the angle 45◦ ), all avalanches will be exactly L steps in length, and simply

lead to the single added particle leaving the system at the edge.

But it is easy to generalize this into a system with quite interesting behaviour. First, we change the

toppling system as follows:

2◦ For all sites i, if h(i)− h(i + 1) > 2 mark the site for toppling

3◦ Topple all marked sites two steps to the right using h(i) = h(i) − 2 and h(i + 1) =

h(i + 1) + 1, h(i+2)=h(i+2)+1

Using this change the system will already exhibit a power-law dependency.

We can in addition make the system more natural by allowing the toppling to occur both to the left

and right, and dropping grains randomly everywhere in the interval [1, L].

• This introduces one minor complication: what should we do if the number of grains is

more than 2 larger than both left or right, but only 3 larger than either of them?
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– Then it is not sensible to topple both left and right, since there are not enough grains

in total (one grain in the middle bin would move upwards, which is clearly undesirable).

A natural solution is to choose one of the topple directions randomly, and then topple

only 2 grains.

This model will give a power-law dependence for some range in the toppling size.

Here are a few examples of how the system proceeds (being lazy, I implemented the code only with

ascii graphics), for L = 20:

The line just shows where the pile is standing.

The numbers at the end of the line give some information about where we are going: hsum is the

total number of grains in the system, the other names are self-explanatory.

X
-------------------- nstep 1 ntopple 0 hsum 1

X X
-------------------- nstep 2 ntopple 0 hsum 2

X X X
-------------------- nstep 3 ntopple 0 hsum 3

X XX X
-------------------- nstep 4 ntopple 0 hsum 4

X X XX X
-------------------- nstep 5 ntopple 0 hsum 5
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So in the very beginning nothing much of interest happens. But if we look forward we will start to

see toppling events, consider e.g. the following two steps:

X
X X
XXXX XXX

XXXXXXXXXXXX
XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
-------------------- nstep 148 ntopple 2 hsum 109

X
XXXX XXX

XXXXXXXXXXXX
XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
-------------------- nstep 149 ntopple 14 hsum 107

On the right side a clear collapse has occurred, reducing the system size by 2 (=109-107).

The steady state pyramidal shape is reached much later. During that, most of the time not much

happens, just as predicted by a critical power law, but sometimes large events do occur. Here is an

example:
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X
XX
XXXX
XXXXX
XXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXXXXX
XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX
-------------------- nstep 6340 ntopple 92 hsum 152

X
XX
XXXX
XXXX

XXXXXXXX
XXXXXXXX

XXXXXXXXXXXX
XXXXXXXXXXXXX

XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
-------------------- nstep 6350 ntopple 100 hsum 140

So here 100 grains have moved in one step, and 12 grains have left the system.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 39



The statistics of the total number of toppled grains in a single toppling event s is shown in the

following figure, for a system size L = 1000.
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s
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102
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105
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s)

N s-3/2
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This shows that the toppling does indeed follow critical behaviour, i.e. a power law

N(s) ∝ s
−α

(3)

in a wide range of sizes s. An exponent of 3/2 fits well the data in a range of about 20 – 3000.

But it is also evident neither the smallest nor largest data points fit the power law.

• For the largest this is understandable: while s−α > 0 up to infinity, in the real case there

is a maximum size of grains which can topple ∝ L2.

• For the smaller sizes it is not immediately evident what the discrepancy is caused by, but it

is easy to imagine that toppling events with only a couple of grains are subject so discrete

a continuum power law equation is not exactly valid.

In most coding and treatment of sand-pile like simulations, people do not actually use h(i) as the

variable. Instead, they use the relative difference of one site to the next, a.k.a. the local slope. In

1D this can be simply

m(i) = h(i + 1)− h(i)

For the simple model given in the algorithm box, the criterion for toppling then simply becomes

m(i) > 1.
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The sand pile simulations can easily be generalized to 2 dimensions. The rule could be for instance

that if m(i) > 3 one grain is given to each of the four nearest neighbours of a site. [Bak, PRL 59 (4)

381]. In 2D the patterns which form on the pile can be very interesting and beautiful; here are a

couple of examples of steady states obtained with different models

– These are from the xsand program available in the xtoys package; a link can be found

at the course web page:
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But the basic idea of the scaling law already becomes apparent from the 1D model, so I will not say

more about the 2D models.

How realistic are these models? The fact that they produce power laws for the avalanche size has

indeed been observed in real sand piles, but only when the pile is small. For modeling larger piles

more sophisticated models have to be used.

11.2.4. Earthquakes

The dependence between an earthquake frequency of occurring and its energy release has been

found to obey a power law of the type

N(E) ∝ E
−b

; b ≈ 0.5

which is known as the Gutenberg-Richter law.

Earthquakes can of course be modeled by actually trying to make a model of a fault line between

tectonic plates, with a system of coupled masses separated by rough surfaces. This is (not

surprisingly) very expensive to do computationally.

A simple cellular automaton can, however, describe some of the basic physics of this system. Define

a real variable F (i, j) on a square lattice of size L2. F represents the force on the block at
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position (i, j). The force matrix is initialized to some small random forces. The simulation loop

then works as follows:

0◦ Select system size L. Number of sites N = L2. Assign small random initial values to

F (i, j).

1◦ Increase F everywhere by a small constant amount ∆F , e.g. 10−5, which corresponds to

the force created by the slow movement of the tectonic plate

2◦ For all (i, j) check whether F (i, j) > Fc, where Fc is the critical force. For convenience,

we set Fc = 4. If it is:

3◦ Release force due to ’slippage’ by doing:

F (i, j) = F (i, j)− 4

and

F (i
′
, j

′
) = F (i

′
, j

′
) + 1 for the 4 nearest neighbours (i′, j′) of (i, j)

Repeat until all force is released in whole system.

4◦ Return to step 1

When this is simulated, the system will eventually reach a steady state where the average force F̄
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does not change any more. (The reason F̄ does not grow forever is that at the boundaries forces

can be lost permanently).

((ANIMATION to be shown during lecture: cd opetus/mc/tests/ca/; dpc sd 594 594 d 5 z 0 4 1 2

3 4 earthquake.xy))

Below is a plot of the average force in the system from this simulation:
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It is clearly evident when the big “earthquakes” occur.
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One can then monitor the distribution of the number of blocks s which are affected by an instability

at the same time. This is illustrated in the following figure:

10 102 103 104

s

5
10

2

5
102

2

5
103

2

5
104

2

N(
s)

N s-1

I.e. this indeed follows a power law, but the exponent is wrong compared to the experimental one

of 0.5.

More advanced CA models are in wide and serious use in geophysics. Papers on the topic are

published by geophysics groups and in geophysical journals, which indicates it is just not a bunch of

college kids playing around with fancy animations.
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Here is an example of what fault lines from a serious CA simulation can look like:
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11.2.5. Forest fire models

Simulating fires (bush, forest, and fires in a 3D space) is a popular application for cellular automata.

Again we will give just one simple example.

A simple forest fire model can be constructed as follows. We start again with an L2 grid. The

simulation then proceeds as follows.

0◦ Fill the sites randomly with trees with a probability pt

1◦ Loop over all sites (i, j):

2 a◦ If the site has a tree, it catches fire with probability f

2 b◦ An empty site grows a tree with probability p

2 c◦ If a site with a tree has a neighbour on fire, it catches fire

2 d◦ If a site is on fire, it dies and becomes empty

3◦ Return to step 1

Note that steps 2 a - 2 d can either occur synchronously (i.e. at the same time), or in sequence

after each other. The latter approach is used in the xfires.c program part of the xtoys package: this

animation is running on the course home page.
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There are many fairly obvious ways in which this simulation could be made more realistic.

• The first is that the spreading of the fire could be made instantaneous, i.e. to occur all in

one time step. Because a forest fire in reality occurs on a much shorter time scale than

tree growth, this would correspond better to a sensible time scale.

• Another improvement could be to make the probability of ignition proportional to the

density of the trees in the forest.

Both improvements have been taken into account in modeling of bush fires in Australia

[www.csu.edu.au/ci/vol08/li01/li01.pdf; published in Complexity International vol. 8]. So have more complex factors

such as land height, flammability, and wind conditions.

Here is a figure from the publication mentioned, showing where fires occur in a system with variable

land height:
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