Hyytiälä publications 2023

Hyytiälä Forestry Field Station
  1. Qin, J., Ma, M., Zhu, Y., Wu, B. & Su, X. 2023, In: Forests 14(7).  3PG-MT-LSTM: A Hybrid Model under Biomass Compatibility Constraints for the Prediction of Long-Term Forest Growth to Support Sustainable Management.
  2. Männistö, E., Köster, E., Held, M., Saarela, T. & Ovaska, A. (eds.) 2023, In: Report Series in Aerosol Science, 271.  Abstract Book of the ACCC-FASN Science Conference 2023.
  3. Markéta Dolejšová, Andrea Botero, Jaz Hee jeong Choi 2023, In:Proceedings of 21st European Conference on Computer-Supported Cooperative Work. Open Forest: Walking-with Feral Stories, Creatures, Data. 
  4. Tenhovirta, S. A. M., 13 Nov 2023 In: Dissertationes Forestales 342.  Aerobic methane emissions from the shoots of Scots pine.
  5. Kulmala, M., Kokkonen, T., Ezhova, E., Baklanov, A., Mahura, A., Mammarella, I., Bäck, J., Lappalainen, H. K., Tyuryakov, S., Kerminen, V-M., Zilitinkevich, S. & Petäjä, T., Mar 2023, In: Boundary-Layer Meteorology. 186, 3, p. 475-503 29 p.  Aerosols, Clusters, Greenhouse Gases, Trace Gases and Boundary-Layer Dynamics: on Feedbacks and Interactions.
  6. Korpela, I., Polvivaara, A., Papunen, S., Jaakkola, L., Tienaho, N., Uotila, J., Puputti, T & Flyktman, A., 2023, In: Silva Fennica 56, n. 4.  Airborne dual-wavelength waveform LiDAR improves species classification accuracy of boreal broadleaved and coniferous trees.
  7. Liu, W., Atherton, J., Mõttus, M., Malenovský, Z., Luo, S., Zhang, Y. & Gastellu-Etchegorry, J-P., 15 Jul 2023, In: Agricultural and Forest Meteorology. 338, 14 p., 109531.  Analysing far-red SIF directional anisotropy of three structurally contrasting forest canopies towards improved GPP estimation.
  8. Shen, A., Chen, J., Li, G. & An, T., 2023, In: Environmental Science: Atmospheres, 3, p. 444-473.  A new advance in the pollution profile, transformation process, and contribution to aerosol formation and aging of atmospheric amines.
  9. Francini, S., Cocozza, C., Hölttä, T., Lintunen, A., Paljakka, T., Chirici, G., Traversi, M.L., Giovannelli, A., 2023, In: Computers, and Electronics in Agriculture, 210.  A temporal segmentation approach for dendrometers signal-to-noise discrimination.
  10. Clifton, O. E., Schwede, D., Hogrefe, C., Bash, J. O., Bland, S., Cheung, P., Coyle, M., Emberson, L., Flemming, J., Fredj, E., Galmarini, S., Ganzeveld, L., Gazetas, O., Goded, I., Holmes, C. D., Horváth, L., Huijnen, V., Li, Q., Makar, P. A., Mammarella, I., & 15 others, 6 Sept 2023, In: Atmospheric Chemistry and Physics. 23, 17, p. 9911-9961 51 p.  A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4).
  11. Adamczyk, S., Lehtonen, A., Mäkipää, R. & Adamczyk, B., 2023, In: New Phytologist, 241, p. 2333-2336. 0 A step forward in fungal biomass estimation – a new protocol for more precise measurements of soil ergosterol with liquid chromatography-mass spectrometry and comparison of extraction methods.
  12. Francini, S., Cocozza, C., Hölttä, T., Lintunen, A., Paljakka, T., Chirici, G., Traversi, M. L. & Giovannelli, A., Jul 2023, In: Computers and Electronics in Agriculture. 210, 11 p., 107925. 1 A temporal segmentation approach for dendrometers signal-to-noise discrimination.
  13. Stolzenburg, D., Cai, R., Blichner, S. M., Kontkanen, J., Zhou, P., Makkonen, R., Kerminen, V-M., Kulmala, M., Riipinen, I. & Kangasluoma, J., 9 Nov 2023, In: Reviews of Modern Physics. 95, 4, 66 p., 045002. 2 Atmospheric nanoparticle growth.
  14. Sulo, J., 2023 In: Report Series in Aerosol Research 272. 3 Atmospheric sub-10 nm aerosol number size distributions : measurement, analysis and implications.
  15. Vekuri, H., Tuovinen, J-P., Kulmala, L., Papale, D., Kolari, P., Aurela, M., Laurila, T., Liski, J. & Lohila, A., 31 Jan 2023, In: Scientific Reports. 13, 1, 9 p., 1720. 4 A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates.
  16. Waldmann, S. 2023 5 Boreal tree stem CO2 flux dynamics.
  17. Abadie, C., Maignan, F., Remaud, M., Kohonen, K-M., Sun, W., Kooijmans, L., Vesala, T., Seibt, U., Raoult, N., Bastrikov, V., Belviso, S. & Peylin, P., Jul 2023, In: Journal of Geophysical Research : Biogeosciences. 128, 7, 26 p., e2023JG007407. 6 Carbon and Water Fluxes of the Boreal Evergreen Needleleaf Forest Biome Constrained by Assimilating Ecosystem Carbonyl Sulfide Flux Observations.
  18. , Jul 2023, In: Journal of Geophysical Research : Biogeosciences. 128, 7, 26 p., e2023JG007407. 7 Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland.
  19. Castarède, D., Brasseur, Z., Wu, Y., Kanji, Z. A., Hartmann, M., Ahonen, L., Bilde, M., Kulmala, M., Petäjä, T., Pettersson, J. B. C., Sierau, B., Stetzer, O., Stratmann, F., Svenningsson, B., Swietlicki, E., Thu Nguyen, Q., Duplissy, J. & Thomson, E. S., 23 Aug 2023, In: Atmospheric Measurement Techniques. 16, 16, p. 3881-3899 19 p. 8 Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii).
  20. Kulmala, M., Cai, R., Ezhova, E., Deng, C., Stolzenburg, D., Dada, L., Guo, Y., Yan, C., Peräkylä, O., Lintunen, A., Nieminen, T., Kokkonen, T. V., Sarnela, N., Petäjä, T. & Kerminen, V-M., 2023, In: Boreal Environment Research. 28, p. 1-13 13 p. 9 Direct link between the characteristics of atmospheric new particle formation and Continental Biosphere-Atmosphere-Cloud-Climate (COBACC) feedback loop.
  21. Faassen, K. A. P., Nguyen, L. N. T., Broekema, E. R., Kers, B. A. M., Mammarella, I., Vesala, T., Pickers, P. A., Manning, A. C., Vila-Guerau de Arellano, J., Meijer, H. A. J., Peters, W. & Luijkx, I. T., 19 Jan 2023, In: Atmospheric Chemistry and Physics. 23, 2, p. 851-876 26 p. 0 Diurnal variability of atmospheric O-2, CO2, and their exchange ratio above a boreal forest in southern Finland.
  22. Räty, M., Sogacheva, L., Keskinen, H-M., Kerminen, V-M., Nieminen, T., Petäjä, T., Ezhova, E. & Kulmala, M., 30 Mar 2023, In: Atmospheric Chemistry and Physics. 23, 6, p. 3779–3798 20 p.  Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests.
  23. Mannisto, E., Ylanne, H., Losoi, M., Keinänen, M., Yli-Pirilä, P., Korrensalo, A., Bäck, J., Hellen, H., Virtanen, A. & Tuittila, E-S., 1 Feb 2023, In: Science of the Total Environment. 858, 10 p. 2 Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition.
  24. Hakola, H., Taipale, D., Praplan, A., Schallhart, S., Thomas, S., Tykkä, T., Helin, A., Bäck, J. & Hellen, H., 23 Mar 2023, In: Frontiers in Forests and Global Change. 6, 17 p., 1116414. 3 Emissions of volatile organic compounds from Norway spruce and potential atmospheric impacts.
  25. Tang, Y., Sahlstedt, E., Young, G., Schiestl-Aalto, P., Saurer, M., Kolari, P., Jyske, T., Bäck, J. & Rinne-Garmston, K. T., Mar 2023, In: New Phytologist. 237, 5, p. 1606-1619 14 p. 4 Estimating intraseasonal intrinsic water-use efficiency from high-resolution tree-ring delta C-13 data in boreal Scots pine forests.
  26. Tang, Y., Schiestl-Aalto, P., Lehmann, M. M., Saurer, M., Sahlstedt, E., Kolari, P., Leppa, K., Back, J. & Rinne-Garmston, K. T., 1 Jan 2023, In: Journal of Experimental Botany. 74, 1, p. 321-335 15 p. 5 Estimating intra-seasonal photosynthetic discrimination and water use efficiency using delta C-13 of leaf sucrose in Scots pine.
  27. Tang, Y., Sahlstedt, E., Young, G., Schiestl-Aalto, P., Saurer, M., Kolari, P., Jyske, T., Bäck, J. & Rinne-Garmston, K. T., Mar 2023, In: New Phytologist. 237, 5, p. 1606-1619 14 p. 6 Estimating intraseasonal intrinsic water-use efficiency from high-resolution tree-ring delta C-13 data in boreal Scots pine forests.
  28. Kuusinen, N., Hovi, A. & Rautiainen M., 2023, In: Silva Fennica. 57, no 1. 7 Estimation of borealhttps://www.silvafennica.fi/article/22014 forest floor lichen cover using hyperspectral airborne and field data.
  29. Ezhova, E., Laanti, T. M., Lintunen, A., Kolari, P., Nieminen, T., Mammarella, I., Heljanko, K. & Kulmala, M., 6 Dec 2023, (E-pub ahead of print) In: EGUsphere. 2023, 40 p. 8 Explainable machine learning for modelling of net ecosystem exchange in boreal forest.
  30. Lehtonen, A., Leppä, K., Rinne-Garmston, K. T., Sahlstedt, E., Schiestl-Aalto, P., Heikkinen, J., Young, G. H. F., Korkiakoski, M., Peltoniemi, M., Sarkkola, S., Lohila, A. & Mäkipää, R., 15 Feb 2023, In: Forest Ecology and Management. 530, 13 p., 120759. 9 Fast recovery of suppressed Norway spruce trees after selection harvesting on a drained peatland forest site.
  31. Riggio, M., Vcelak, J., Kaitaniemi, P., Barbosa, A., Hrovatin, N., Sandak, A., Sandak, J., Mrissa, M., Kresz, M., Yli-Jyrä, A., Toivonen, R. & Alakukku, L., 2023, World Conference on Timber Engineering (WCTE 2023): Timber for a Livable Future. Nyrud, A. Q. & Malo, K. A. (eds.). Oslo: World Conference on Timber Engineering , p. 3896-3904 0 Federated use of hygrothermal monitoring data in mass timber buildings: opportunities and challenges.
  32. Zhang, Z., Guanter, L., Porcar-Castell, A., Rossini, M., Pacheco-Labrador, J. & Zhang, Y., 1 Feb 2023, In: Remote Sensing of Environment. 285, 15 p. 1 Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence.
  33. Pöhlker, M.L., Pöhlker, C., Quaas, J., Mülmenstädt, J., Pozzer, A., Andreae, M.O., Artaxo, P., Block, K., Coe, H., Ervens, B., Gallimore, P., Gaston, C.J., Gunthe, S.S., Henning, S., Herrmann, H., Krüger, O.O., McFiggans, G., Poulain, L., Raj, S.S., Reyes-Villegas, E., Royer, H.M., Walter, D., Wang, Y. & Pöschl, U., 2023, In: Nature Communications, 14. 2 Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing.
  34. Vettikkat, L., Miettinen, P., Buchholz, A., Rantala, P., Yu, H., Schallhart, S., Petaja, T., Seco, R., Mannisto, E., Kulmala, M., Tuittila, E-S., Guenther, A. B. & Schobesberger, S., 27 Feb 2023, In: Atmospheric Chemistry and Physics. 23, 4, p. 2683-2698 16 p. 3 High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes.
  35. Lepilin, D., 2023, In: Dissertationes Forestales 346. 4 Impacts of thinning activities on boreal peatland forests.
  36. Vinjamuri, K. S., Vountas, M., Lelli, L., Stengel, M., Shupe, M. D., Ebell, K., and Burrows, J. P. 2023, In: Atmos. Meas. Tech., 16, 2903–2918: Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic.
  37. Stolzenburg, D., Laurila, T., Aalto, P., Vanhanen, J., Petäjä, T. & Kangasluoma, J., 25 May 2023, In: Atmospheric Measurement Techniques. 16, 10, p. 2471-2483 13 p. 5 Improved counting statistics of an ultrafine differential mobility particle size spectrometer system.
  38. Halme, E. & Mõttus, M., 2023, In: Silva Fennica, 57, 2. 6 Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties.
  39. Yan, C., Tham, Y. J., Nie, W., Xia, M., Wang, H., Guo, Y., Ma, W., Zhan, J., Hua, C., Li, Y., Deng, C., Li, Y., Zheng, F., Chen, X., Li, Q., Zhang, G., Mahajan, A. S., Cuevas, C. A., Huang, D. D., Wang, Z., & 10 others, Nov 2023, In: Nature Geoscience. 16, 11, p. 975–981 21 p. 7 Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns.
  40. Korpela, I., Polvivaara, A., Hovi, A., Junttila, S. & Holopainen, M., 1 Aug 2023, In: Remote Sensing of Environment. 293, 19 p. 8 Influence of phenology on waveform features in deciduous and coniferous trees in airborne LiDAR.
  41. Mölders, N. & Friberg, M., 2023, In: Open Journal of Air Pollution, 12, 1. 9 June to October Aerosol Optical Depth over the Arctic at Various Spatial and Temporal Scales in MODIS, MAIAC, CALIOP and GOES Data.
  42. Kotila, M., Suominen, K. M., Vasko, V. V., Blomberg, A. S., Lehikoinen, A., Andersson, T., Aspi, J., Cederberg, T., Hänninen, J., Inkinen, J., Koskinen, J., Lundberg, G. M., Mäkinen, K., Rontti, M., Snickars, M., Solbakken, J. S., Sundell, J., Syvänperä, I., Vuorenmaa, S. K., Ylönen, J., & 2 others, Jun 2023, In: Ecography. 2023, 6, 12 p., e06617. 0 Large-scale long-term passive-acoustic monitoring reveals spatio-temporal activity patterns of boreal bats.
  43. Peltokangas, K., Kalu, S., Huusko, K., Havisalmi, J., Heinonsalo, J., Karhu, K., Kulmala, L., Liski, J. & Pihlatie, M., 10 Aug 2023, In: PLoS One. 18, 8, 23 p., e0284092. 1 Ligneous amendments increase soil organic carbon content in fine-textured boreal soils and modulate N2O emissions.
  44. Forsström., P.R., Hovi, A., Juola, J. & Rautiainen, M., 1 June 2023, In: Agricultural and Forest Meteorology, 336. 2 Link between light availability and spectral properties of forest floor in European forests.
  45. Le, V., Lobo, H., O’Connor, E.J. & Vakkari, V., 2023, In: Atmospheric Measurement Techniques, 17, p. 921-941. 3 Long-term aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar.
  46. Holm., S., 2023 4 Manipulating the charger ion distribution towards fixed properties.
  47. Aliaga, D., Tuovinen, S., Zhang, T., Lampilahti, J., Li, X, Ahonen, L., Kokkonen, T., Nieminen, T., Hakala, S., Paasonen, P., Bianchi, F., Worsnop, D., Kerminen, V.-M. & Kulmala, M., 2023, In: Aerosol Research, 1, p. 81-92. 5 Nanoparticle ranking analysis: determining new particle formation (NPF) event occurrence and intensity based on the concentration spectrum of formed (sub-5 nm) particles.
  48. Zha, Q., 2023, In: Report Series in Aerosol Science 261. 6 New particle formation and its gaseous precursors in the atmosphere : from the boreal forest to the mountaintops.
  49. Lampilahti, A., Garmash, O., Arshinov, M., Davydov, D., Belan, B., Noe, S., Vana, M., Komsaare, K., Junninen, H., Bianchi, F., Lampilahti, J., Dada, L., Kerminen, V-M., Petäjä, T., Kulmala, M. & Ezhova, E., Aug 2023, In: Boreal Environment Research. 28, p. 147-167 21 p. 7 New particle formation in boreal forests of Siberia, Finland and Estonia.
  50. Lampimäki, M., Baalbaki, R., Ahonen, L., Korhonen, F., Cai, R., Chan, T., Stolzenburg, D., Petäjä, T., Kangasluoma, J., Vanhanen, J. & Lehtipalo, K., Aug 2023, In: Journal of Aerosol Science. 172, 12 p., 106180. 8 Novel aerosol diluter - Size dependent characterization down to 1 nm particle size.
  51. Conen, F., Yakutin, M.V., Puchnin, A.,N. & Yttri, K.E., 2023, In: Atmospheric Research, 285. 9 On coarse patterns in the atmospheric concentration of ice nucleating particles.
  52. Räty, M., 2023, In: Report Series in Aerosol Science 270. 0 On interconnections between boreal forests and clouds.
  53. Li, X., Cai, R., Hao, J., Smith, J.N. & Jiang, J., 2023, In: TrAC Trends in Analytical Chemistry, 166. 1 Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities.
  54. Ciarelli, G., Tahvonen, S., Chokakian, A., Bettineschi, M., Vitali, B., Petäjä, T. & Bianchi, F., 2023, In: Geoscientific Model Development, 17, 2. 2 On the formation of biogenic secondary organic aerosol in chemical transport models: an evaluation of the WRF-CHIMERE (v2020r2) model with a focus over the Finnish boreal forest.
  55. Kulmala, M., Lintunen, A., Lappalainen, H., Virtanen, A., Yan, C., Ezhova, E., Nieminen, T., Riipinen, I., Makkonen, R., Tamminen, J., Sundström, A-M., Arola, A., Hansel, A., Lehtinen, K., Vesala, T., Petäjä, T., Bäck, J., Kokkonen, T. & Kerminen, V-M., 2023, In: Chemical Reviews 123, 4, p. 1635-1679. 3 Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere.
  56. Wang, S., Zhao, Y., Chan, A.W.H., Yao, M., Chen, Z. & Abbat, J.P.D., 2023, In: Atmospheric Chemistry and Physics. 23, 23, p. 14949-14971 23 p. 4 Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere.
  57. Cornér, J., 2023. 5 Optimising an inverse modelling system for local peatland methane emissions.
  58. Fung, P. L., Rannik, U., Mammarella, I. & Vesala, T., 16 Dec 2023, In: Geophysical Research Letters. 50, 23, 10 p., e2023GL104354. 6 Ozone Fluxes Over a Boreal Lake Exhibit Enhanced Deposition at Nights.
  59. Juola, J., Hovi, A. & Rautiainen, M. 1 Dec 2023, In: Remote Sensing of Environment. 298. 7 Practical recommendations and limitation for pushbroom hyperspectral imaging of tree stems.
  60. Qiao, X., Li, X., Yan, C., Sarnela, N., Yin, R., Guo, Y., Yao, L., Nie, W., Huang, D., Wang, Z., Bianchi, F., Liu, Y., Donahue, N.M., Kulmala, M. & Jiang., J. 2023, In: Environmental Science: Atmospheres. 3. p. 230-237. 8 Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method.
  61. King, M., 2023. 9 Phenology Effects on Carbon and Water Dynamics in a Pristine Boreal Fen : A multi-decadal analysis from 2005-2007 & 2014-2022.
  62. Schraik, D., Wang, D., Hovi, A. & Rautiainen, M. 15 Aug 2023, In: Agricultural and Forest Meteorology. 339. 0 Quantifying stand-level clumping of boreal, hemiboreal and temperate European forest stands using terrestrial laser scanning.
  63. Kohl, L., Tenhovirta, S. A. M., Koskinen, M., Putkinen, A., Haikarainen, I., Polvinen, T., Galeotti, L., Mammarella, I., Siljanen, H. M. P., Robson, T. M., Adamczyk, B. & Pihlatie, M., 21 Dec 2023, In: Proceedings of the National Academy of Sciences of the United States of America. 120, 52 1 Radiation and temperature drive diurnal variation of aerobic methane emissions from Scots pine canopy.
  64. Ge, Y., Li, X., Palviainen, M., Zhou, X., Heinonsalo, J., Berninger, F., Pumpanen, J., Koester, K. & Sun, H., Jun 2023, In: Journal of forestry research. 34, 3, p. 749–759 11 p. 2 Response of soil bacterial community to biochar application in a boreal pine forest.
  65. Lampela, M., Minkkinen, K., Strakova, P., Bhuiyan, R., He, W., Makiranta, P., Ojanen, P., Penttila, T. & Laiho, R., 2 kesäk. 2023, julkaisussa: Frontiers in Forests and Global Change. 6, 17 Sivumäärä 3 Responses of fine-root biomass and production to drying depend on wetness and site nutrient regime in boreal forested peatland.
  66. Yin, R., Li, X., Yan, C., Cai, R., Zhou, Y., Kangasluoma, J., Sarnela, N., Lampilahti, J., Petäjä, T., Kerminen, V.-M., Bianchi, F., Kulmala, M. & Jiang J., 2023, In: Atmospheric Chemistry and Physics, 23, 9, p. 5279-5296. 4 Revealing the sources and sinks of negative cluster ions in an urban environment through quantitative analysis.
  67. Dukat, P., Ziemblinska, K., Räsänen, M., Vesala, T., Olejnik, J. & Urbaniak, M., Jun 2023, In: European Journal of Forest Research. 142, 3, p. 671-690 20 p. 5 Scots pine responses to drought investigated with eddy covariance and sap flow methods.
  68. Antropov, O., Molinier, M., Kuzu, R.S., Hughes, L., Rußwurm, M., Tuia, D., Dumitru, C.O., Ge, S., Saha, S. & Zhu, X.X., 2023, In: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium 6 Semi-Supervised Deep Learning Representations in Earth Observation Based Forest Management.
  69. Ge, S., Tomppo, E., Rauste, Y., McRoberts, R.E., Praks, J., Gu, H., Su, W. & Antropov, O., 2023, In: Remote Sensing, 15, 14. 7 Sentinel-1 Time Series for Predicting Growing Stock Volume of Boreal Forest: Multitemporal Analysis and Feature Selection.
  70. Karnezi, E., Heikkinen, L., Kulmala, M. & Pandis, S. N., 22 Apr 2023, In: Atmosphere. 14, 5, 12 p., 763. 8 Simulating Atmospheric Organic Aerosol in the Boreal Forest Using Its Volatility-Oxygen Content Distribution.
  71. Khadir, T., Riipinen, I., Talvinen, S., Heslin-Rees, D., Poehlker, C., Rizzo, L., Machado, L. A. T., Franco, M. A., Kremper, L. A., Artaxo, P., Petäjä, T., Kulmala, M., Tunved, P., Ekman, A. M. L., Krejci, R. & Virtanen, A., 16 Oct 2023, In: Geophysical Research Letters. 50, 19, 11 p., e2023GL104325. 9 Sink, Source or Something In-Between? Net Effects of Precipitation on Aerosol Particle Populations.
  72. Rusanen, A., Hõrrak, K., Ahonen, L. R., Nieminen, T., Aalto, P. P., Kolari, P., Kulmala, M., Petäjä, T. & Junninen, H., 5 Jun 2023, In: Atmospheric Measurement Techniques. 16, 11, p. 2781-2793 13 p. 0 SMEARcore - modular data infrastructure for atmospheric measurement stations.
  73. Kamarainen, M., Tuovinen, J-P., Kulmala, M., Mammarella, I., Aalto, J., Vekuri, H., Lohila, A. & Lintunen, A., 2 Mar 2023, In: Biogeosciences. 20, 4, p. 897-909 13 p. 1 Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange.
  74. Kauppinen, S. 2023 2 Soil- and Lake-Atmosphere Mercury Fluxes in a Boreal Forest Environment.
  75. Kemppinen, J., Niittynen, P., Rissanen, T., Tyystjärvi, V., Aalto, J. & Luoto, M., 2023, In: Water Resources Research, 59, 6. 3 Soil Moisture Variations From Boreal Forests to the Tundra.
  76. Päivinen, R., Petrokofsky, G., Harvey, W. J., Petrokofsky, L., Puttonen, P., Kangas, J., Mikkola, E., Byholm, L. & Käär, L., 2023, In: Scandinavian Journal of Forest Research. 38, 1-2, p. 23-38 16 p. 4 State of forest research in 2010s - a bibliographic study with special reference to Finland, Sweden and Austria.
  77. Leinonen, V., 2023, In: Report Series in Aerosol Science 268. 5 Statistical modeling of atmospheric aerosols: long-term trends and emissions of traffic and small-scale wood combustion.
  78. Hovi, A., Schraik, D., Kuusinen, N., Fabiánek, T., Hanuš, J., Homolová, L., Juola, J., Lukeš, P. & Rautiainen, M., 2023, In: Remote Sensing of Environment. 293. 6 Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance.
  79. Lintunen, A., Aalto, J., Asmi, A., Aurela, M., Bäck, J., Ehn, M., Ezhova, E., Hakola, H., Hartonen, K., Heinonsalo, J., Hellén, H., Hölttä, T., Jokinen, T., Järvi, L., Järvinen, H., Kangasluoma, J., Kerminen, V-M., Kolari, P., Köster, K., Köster, E., & 38 others, 2023, In: Boreal Environment Research. 28, p. 15-80 66 p. 7 The Center of Excellence in Atmospheric Science (2002-2019)-from molecular and biological processes to the global climate.
  80. Saarela, T., 2023, In: Publication of the University of Eastern Finland, Dissertations in Science, Forestry and Technology, 6. 8 The effect of catchment characteristics on the dynamics of dissolved organic matter (DOM) and greenhouse gases in northern freshwater ecosystems.
  81. Rajewicz, P., Zhang, C., Atherton, J., Van Wittenberghe, S., Riikonen, A., magney, T., Fernandez-Marin, B., Garcia-Plazaola, J. I. & Porcar-Castell, A., 2023, In: Agricultural and Forest Meteorology. 9 The photosynthetic response of spectral chlorophyll fluorescence differs across species and light environments in a boreal forest ecosystem.
  82. Talvinen, S., 2023, In: Report Series in Aerosol Science 262. 0 Two-Way Interactions Between Aerosols and Clouds: From Chamber Simulation to Long-Term Observations.
  83. Thomas, S.T., Tykkä, T., Hellén, H., Bianchi, F. & Praplan, A.P., 2023, In: Atmospheric Chemistry and Physics, 23, 22, p. 14627-14642.  1 Undetected biogenic volatile organic compounds from Norway spruce drive total ozone reactivity measurements.
  84. Tang, Y., 2023, In: Dissertationes Forestales 335. 2 Unravelling δ13C signal in Scots pine trees for climate change and tree physiology studies.
  85. Shcherbcheva, A., Campos, M.B., Liang, X., Puttonen, E. & Wang, Y. 2023, In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W2-2023, p. 1787–1794. 3 Unsupervised statistical approach for tree-level separation of foliage and non-leaf components from point clouds.
  86. Kameswara, S.V., Vountas, M., Lelli, L. Stengel, M., Shupe, M.D., Ebell, K. & Burrows, J.P., 2023, In: Atmospheric Measurement Techniques, 16, 11, p. 2903-2918.  4 Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic.
  87. Köster, E., Chapman, J.P.B., Barel, J.M., Korrensalo, A., Laine, A.M., Vasander, H.T. & Tuittila, E.-S., 2023, In: Global Change Biology, 29, 19. 5 Water level drawdown makes boreal peatland vegetation more responsive to weather conditions.
  88. Pusfitasari, E.K., Ruiz-Jimenez, J., Tiusanen, A., Suuronen, M., Haataja, J., Wu, Y., Kangasluoma, J. Luoma, K., Petäjä, T., Jussila, M., Hartonen, K. & Riekkola, M.-L., 2023, In: Atmospheric Chemistry and Physics, 23, 10, p. 5885-5904.  6 Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices.
  89. Spadavecchia, C., Campos., M.B., Piras, M., Puttonen, E. & Shcherbacheva, A., 2023, In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W2-2023, 1795–1802. 7 Wood-leaf unsupervised classification of silver birch trees for biomass assessment using oblique point clouds.