Hyytiälä publications 2022
Hyytiälä Forestry Field Station
  1. Aalto, Juha., Tyystjärvi, V. Niittynen,P. Kemppinen, J. Rissanen, T. Gregow, H. & Luoto, M. 2022. Microclimate temperature variations from boreal forests to the tundra. Agricultural and Forest Meteorology 323
  1. Ala-Könni, J., Kohonen, K.-M., Leppäranta, M., and Mammarella, I.: Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake, Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, 2022.
  1. Alfaouri, D., Passananti, M., Kangasluoma, J., Zanca, T., Ahonen, L., Kubecka, J., Myllys, N., & Vehkamäki, H. (2022). A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer. Atmospheric Measurement Techniques15(1), 11-19. https://doi.org/10.5194/amt-15-11-2022
  1. Artaxo, P., Hansson, H-C., Andreae, M. O., Bäck, J., Alves, E. G., Barbosa, H. M. J., Bender, F., Bourtsoukidis, E., Carbone, S., Chi, J., Decesari, S., Despres, V. R., Ditas, F., Ezhova, E., Fuzzi, S., Hasselquist, N. J., Heintzenberg, J., Holanda, B. A., Guenther, A., ... Kesselmeier, J. (2022). Tropical and Boreal Forest Atmosphere Interactions: A Review. Tellus. Series B: Chemical and Physical Meteorology74, 24-163. https://doi.org/10.16993/tellusb.34
  1. Beck, L. 2022. Field studies on new particle formation and atmospheric ions in polar atmosphere and above the boreal forest. Report Series of aerosol Science 255. Väitöskirja.
  1. Beck, L. J., Schobesberger, S., Junninen, H., Lampilahti, J., Manninen, A., Dada, L., Leino, K., He, X-C., Pullinen, I., Quelever, L. L. J., Franck, A., Poutanen, P., Wimmer, D., Korhonen, F., Sipilä, M., Ehn, M., Worsnop, D. R., Kerminen, V-M., Petäjä, T., ... Duplissy, J. (2022). Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics22(13), 8547-8577. https://doi.org/10.5194/acp-22-8547-2022
  1. Beck, L. J., Schobesberger, S., Sipilä, M., Kerminen, V. M., & Kulmala, M. (2022). Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer. Atmospheric Measurement Techniques, 15(6), 1957-1965.
  1. Bianco, A., Neefjes, I., Alfaouri, D., Vehkamäki, H., Kurten, T., Ahonen, L., Passananti, M., & Kangasluoma, J. (2022). Separation of isomers using a differential mobility analyser (DMA): Comparison of experimental vs modelled ion mobility. Talanta243, [123339]. https://doi.org/10.1016/j.talanta.2022.123339
  1. Boy, M., Zhou, P., Kurten, T., Chen, D., Xavier, C., Clusius, P., Roldin, P., Baykara, M., Pichelstorfer, L., Foreback, B., Bäck, J., Petäjä, T., Makkonen, R., Kerminen, V-M., Pihlatie, M., Aalto, J., & Kulmala, M. (2022). Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates. npj climate and atmospheric science5(1), [72]. https://doi.org/10.1038/s41612-022-00292-0
  1. Brasseur, Z., Castarede, D., Thomson, E. S., Adams, M. P., Drossaart van Dusseldorp, S., Heikkilä, P., Korhonen, K., Lampilahti, J., Paramonov, M., Schneider, J., Vogel, F., Wu, Y., Abbatt, J. P. D., Atanasova, N. S., Bamford, D. H., Bertozzi, B., Boyer, M., Brus, D., Daily, M. I., ... Duplissy, J. (2022). Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiala boreal forest. Atmospheric Chemistry and Physics22(8), 5117-5145. https://doi.org/10.5194/acp-22-5117-2022
  1. Cai, R., Deng, C., Stolzenburg, D., Li, C., Guo, J., Kerminen, V. M., ... & Kangasluoma, J. (2022). Survival probability of atmospheric new particles: closure between theory and measurements from 1.4 to 100 nm. Atmospheric Chemistry & Physics Discussions.
  1. Carlton, X. 2022. Detailed model studies on new particle formation and relevant precursors in chamber experiments and ambient atmosphere. Report Series of Aerosol Science 254. Väitöskirja.
  1. Carracedo, L. G., Lehtipalo, K., Ahonen, L. R., Sarnela, N., Holm, S., Kangasluoma, J., Kulmala, M., Winkler, P. M., & Stolzenburg, D. (2022). On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments. Atmospheric Chemistry and Physics22(19), 13153-13166. https://doi.org/10.5194/acp-22-13153-2022
  1. Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela, M., Baltensperger, U., Bougiatioti, A., De Brito, J. F., Ceburnis, D., Chazeau, B., Chebaicheb, H., Daellenbach, K. R., Ehn, M., El Haddad, I., Eleftheriadis, K., Favez, O., ... Prevot, A. S. H. (2022). European aerosol phenomenology - 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International166, [107325]. https://doi.org/10.1016/j.envint.2022.107325
  1. Cho, A., Kooijmans, L. M., Kohonen, K. M., Wehr, R., & Krol, M. C. (2022). Optimizing the Carbonic Anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the simple biosphere model (SiB4). EGUsphere, 1-36.
  1. Costa, V. A. R., Durand, M., Robson, T. M., Porcar-Castell, A., Korpela, I., & Atherton, J. (2022). Uncrewed aircraft system spherical photography for the vertical characterization of canopy structural traits. New Phytologist234(2), 735-747. https://doi.org/10.1111/nph.17998
  1. Daily, M. I., Tarn, M. D., Whale, T. F., and Murray, B. J.: An evaluation of the heat test for the ice-nucleating ability of minerals and biological material, Atmos. Meas. Tech., 15, 2635–2665, https://doi.org/10.5194/amt-15-2635-2022, 2022
  1. Davies P, Baatz R, Bogena HR, Quansah E, Amekudzi LK. Optimal Temporal Filtering of the Cosmic-Ray Neutron Signal to Reduce Soil Moisture Uncertainty. Sensors. 2022; 22(23):9143. https://doi.org/10.3390/s22239143
  1. De Pue, J., Barrios, J. M., Liu, L., Ciais, P., Arboleda, A., Hamdi, R., ... & Gellens-Meulenberghs, F. (2022). Local scale evaluation of the simulated interactions between energy, water and vegetation in land surface models. Biogeosciences Discussions, 2022, 1-44.
  1. Faassen, K. A., Nguyen, L. N., Broekema, E. R., Kers, B. A., Mammarella, I., Vesala, T., ... & Luijkx, I. T. (2023). Diurnal variability of atmospheric O 2, CO 2, and their exchange ratio above a boreal forest in southern Finland. Atmospheric Chemistry and Physics, 23(2), 851-876.
  1. Franck, A. 2022.Active and passive remote sensing for atmospheric applications. Väitöskirja.
  1. Fu, Z., Ciais, P., Makowski, D., Bastos, A., Stoy, P. C., Ibrom, A., Knohl, A., Migliavacca, M., Cuntz, M., Šigut, L., Peichl, M., Loustau, D., El-Madany, T. S., Buchmann, N., Gharun, M., Janssens, I., Markwitz, C., Grünwald, T., Rebmann, C., ... Wigneron, J. P. (2022). Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Global Change Biology28(6), 2111-2123. https://doi.org/10.1111/gcb.16050
  1. S. Ge, H. Gu, W. Su, J. Praks, A. Lönnqvist and O. Antropov, "Deep Learning Models in Forest Mapping Using Multitemporal SAR and Optical Satellite Data," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 5688-5691, doi: 10.1109/IGARSS46834.2022.9883740.
  1. Ge, S., Gu, H., Su, W., Rauste, Y., Praks, J., & Antropov, O. (2022). Boreal Forest Height Mapping using Sentinel-1 Time Series and improved LSTM model. bioRxiv, 2022-09.
  1. Ge, Y., Li, Xl., Palviainen, M. et al. Response of soil bacterial community to biochar application in a boreal pine forest. J. For. Res. (2022)
  1. Ge, S., Su, W., Gu, H., Rauste, Y., Praks, J., & Antropov, O. (2022). Improved LSTM Model for Boreal Forest Height Mapping Using Sentinel-1 Time Series. Remote Sensing, 14(21), 5560.
  1. Golub, M., Thiery, W., Marce, R., Pierson, D., Vanderkelen, I., Mercado-Bettin, D., Woolway, R. I., Grant, L., Jennings, E., Kraemer, B. M., Schewe, J., Zhao, F., Frieler, K., Mengel, M., Bogomolov, V. Y., Bouffard, D., Cote, M., Couture, R-M., Debolskiy, A., ... Zdorovennova, G. (2022). A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development15(11), 4597-4623. https://doi.org/10.5194/gmd-15-4597-2022
  1. Guo, Y., Yan, C., Liu, Y., Qiao, X., Zheng, F., Zhang, Y., Zhou, Y., Li, C., Fan, X., Lin, Z., Feng, Z., Zhang, Y., Zheng, P., Tian, L., Nie, W., Wang, Z., Huang, D., Daellenbach, K. R., Yao, L., Dada, L., Bianchi, F., Jiang, J., Liu, Y., Kerminen, V.-M., and Kulmala, M.: Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol, Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022, 2022
  1. Halme, E., Ihalainen, O., Korpela, I., & Mõttus, M. (2022). Assessing spatial variability and estimating mean crown diameter in boreal forests using variograms and amplitude spectra of very-high-resolution remote sensing data. International Journal of Remote Sensing43(1), 349-369. https://doi.org/10.1080/01431161.2021.2018148
  1. Heiskanen, J., Bruemmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gielen, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens, I. A., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B., Lankreijer, H., Levin, I., Linderson, M-L., ... Kutsch, W. (2022). The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society103(3), E855-E872. https://doi.org/10.1175/BAMS-D-19-0364.1
  1. Hovi A.Lukeš P.Homolová L.Juola J.Rautiainen M. (2022). Small geographical variability observed in Norway spruce needle spectra across Europe. Silva Fennica vol. 56 no. 2 article id 10683https://doi.org/10.14214/sf.10683
  1. Hovi, A., Schraik, D., Hanuš, J., Homolová, L., Juola, J., Lang, M., ... & Rautiainen, M. (2022). Assessment of a photon recollision probability based forest reflectance model in European boreal and temperate forests. Remote sensing of environment, 269, 112804.
  1. Isokääntä, S., Kim, P., Mikkonen, S., Kühn, T., Kokkola, H., Yli-Juuti, T., ... & Virtanen, A. (2022). The effect of clouds and precipitation on the aerosol concentrations and composition in a boreal forest environment. Atmospheric Chemistry and Physics, 22(17), 11823-11843.
  1. Isokääntä, S., Mikkonen, S., Laurikainen, M., Buchholz, A., Schobesberger, S., Blande, J. D., Nieminen, T., Ylivinkka, I., Bäck, J., Petäjä, T., Kulmala, M., & Yli-Juuti, T. (2022). Multivariate model-based investigation of the temperature dependence of ozone concentration in Finnish boreal forest. Atmospheric Environment289, [119315].
  1. Jokinen, T., Lehtipalo, K., Thakur, R. C., Ylivinkka, I., Neitola, K., Sarnela, N., Laitinen, T., Kulmala, M., Petäjä, T., & Sipilä, M. (2022). Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics22(4), 2237-2254.
  1. Junninen, H., Ahonen, L., Bianchi, F., Quelever, L., Schallhart, S., Dada, L., Manninen, H. E., Leino, K., Lampilahti, J., Mazon, S. B., Rantala, P., Räty, M., Kontkanen, J., Negri, S., Aliaga, D., Garmash, O., Alekseychik, P., Lipp, H., Tamme, K., ... Kulmala, M. (2022). Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications earth & environment3(1), [93]. https://doi.org/10.1038/s43247-022-00406-9
  1. Kohonen, K. M. (2022). Carbonyl sulfide fluxes and relation to photosynthesis in the boreal region. DOCTORAL SCHOOL IN NATURAL SCIENCES DISSERTATION SERIES 3/2022. Väitöskirja.
  1. Kohonen, K-M., Dewar, R., Tramontana, G., Mauranen, A., Kolari, P., Kooijmans, L. M. J., Papale, D., Vesala, T., & Mammarella, I. (2022). Intercomparison of methods to estimate gross primary production based on CO2 and COS flux measurements. Biogeosciences19(17), 4067-4088. https://doi.org/10.5194/bg-19-4067-2022
  1. Kokkonen, N., Laine, A. M., Männistö, E., Mehtätalo, L., Korrensalo, A., & Tuittila, E. S. (2022). Two Mechanisms Drive Changes in Boreal Peatland Photosynthesis Following Long-Term Water Level Drawdown: Species Turnover and Altered Photosynthetic Capacity. Ecosystems, 25(7), 1601-1618.
  1. Korpela I.Polvivaara A.Papunen S.Jaakkola L.Tienaho N.Uotila J.Puputti T.Flyktman A. (2023). Airborne dual-wavelength waveform LiDAR improves species classification accuracy of boreal broadleaved and coniferous trees. Silva Fennica vol. 56 no. 4 article id 22007https://doi.org/10.14214/sf.22007
  1. Korrensalo, A., Mammarella, I., Alekseychik, P., Vesala, T., & Tuittila, E-S. (2022). Plant mediated methane efflux from a boreal peatland complex. Plant and Soil471(1-2), 375–392. https://doi.org/10.1007/s11104-021-05180-9
  1. Kulmala, M., Junninen, H., Dada, L., Salma, I., Weidinger, T., Thén, W., Vörösmarty, M., Komsaare, K., Stolzenburg, D., Cai, R., Yan, C., Li, X., Deng, C., Jiang, J., Petäjä, T., Nieminen, T., & Kerminen, V-M. (2022). Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science10, [912385]. https://doi.org/10.3389/fenvs.2022.912385
  1. Kulmala, M., Stolzenburg, D., Dada, L., Cai, R., Kontkanen, J., Yan, C., ... & Kerminen, V. M. (2022). Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters. Journal of Aerosol Science, 159, 105878.
  1. Laarne P, Amnell E, Zaidan MA, Mikkonen S, Nieminen T. Exploring Non-Linear Dependencies in Atmospheric Data with Mutual Information. Atmosphere. 2022; 13(7):1046. https://doi.org/10.3390/atmos13071046
  1. Laine, A. M., Korrensalo, A., & Tuittila, E. S. (2022). Plant functional traits play the second fiddle to plant functional types in explaining peatland CO2 and CH4 gas exchange. Science of the Total Environment, 834, 155352.
  1. Lampilahti. J. 2022.  Effect of boundary layer dynamics on atmospheric new particle formation. Report Series of Aerosol Science 248. Väitöskirja.
  1. Lappalainen, H. K., Petäjä, T., Lintunen, A., & Kulmala, M. (2022). Institute for Atmospheric and Earth System Research (INAR): Showcases for making science diplomacy. Polar Record, 58.
  1. Lappalainen, H. K., Petäjä, T., Vihma, T., Räisänen, J., Baklanov, A., Chalov, S., Esau, I., Ezhova, E., Leppäranta, M., Pozdnyakov, D., Pumpanen, J., Andreae, M. O., Arshinov, M., Asmi, E., Bai, J., Bashmachnikov, I., Belan, B., Bianchi, F., Biskaborn, B., ... Kulmala, M. (2022). Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics22(7), 4413–4469. https://doi.org/10.5194/acp-22-4413-2022
  1. Launiainen, S., Katul, G. G., Leppä, K., Kolari, P., Aslan, T., Grönholm, T., Korhonen, L., Mammarella, I., & Vesala, T. (2022). Does growing atmospheric CO2 explain increasing carbon sink in a boreal coniferous forest? Global Change Biology28(9), 2910-2929. https://doi.org/10.1111/gcb.16117
  1. Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Sulo, J., Chan, T., Laurila, T., ... & Jokinen, T. (2022). The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter. Journal of Aerosol Science, 159, 105896.
  1. Leinonen, V., Kokkola, H., Yli-Juuti, T., Mielonen, T., Kühn, T., Nieminen, T., ... & Mikkonen, S. (2022). Comparison of particle number size distribution trends in ground measurements and climate models. Atmospheric Chemistry and Physics, 22(19), 12873-12905.
  1. Lepilin, D., Laurén, A., Uusitalo, J., Fritze, H., Laiho, R., Kimura, B., & Tuittila, E-S. (2022). Response of vegetation and soil biological properties to soil deformation in logging trails of drained boreal peatland forests. Canadian Journal of Forest Research52(4), 511-526. https://doi.org/10.1139/cjfr-2021-0176
  1. Leppä, K., Tang, Y., Ogée, J., Launiainen, S., Kahmen, A., Kolari, P., Sahlstedt, E., Saurer, M., Schiestl-Aalto, P., & Rinne-Garmston, K. T. (2022). Explicitly accounting for needle sugar pool size crucial for predicting intra-seasonal dynamics of needle carbohydrates delta O-18 and delta C-13. New Phytologist236(6), 2044-2060. https://doi.org/10.1111/nph.18227.
  1. MacSween, K., Stupple, G., Aas, W., Kyllönen, K., Pfaffhuber, K. A., Skov, H., ... & Mastromonaco, M. N. (2022). Updated trends for atmospheric mercury in the Arctic: 1995–2018. Science of the Total Environment, 837, 155802.
  1. Mahnken, M., Cailleret, M., Collalti, A., Trotta, C., Biondo, C., D'Andrea, E., ... & Reyer, C. P. (2022). Accuracy, realism and general applicability of European forest models. Global Change Biology, 28(23), 6921-6943.
  1. Mäkelä A., Tian X., Repo A., Ilvesniemi H., Marshall J., Minunno F., Näsholm T., Schiestl-Aalto P., Lehtonen A. 2022.   Do mycorrhizal symbionts drive latitudinal trends in photosynthetic carbon use efficiency and carbon sequestration in boreal forests? FORECO 520 (2022) 120355.  https://doi.org/10.1016/j.foreco.2022.120355
  1. Mäkelä, J., Arppe, L., Fritze, H., Heinonsalo, J., Karhu, K., Liski, J., Oinonen, M., Straková , P., & Viskari, T. (2022). Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model. Biogeosciences19(17), 4305-4313. https://doi.org/10.5194/bg-19-4305-2022
  1. Mäki M, Ryhti K, Fer I, Ťupek B, Vestin P, Roland M, Lehner I, Köster E, Lehtonen A, Bäck J, Heinonsalo J, Pumpanen J, Kulmala L (2022). Heterotrophic and rhizospheric respiration in coniferous forest soils along a latitudinal gradient. Agricultural and Forest Meteorology 317: 108876.
  1. Männistö, E. 2022. Emissions of methane and other biogenic volatile organic compounds from boreal peatlands. https://doi.org/10.14214/df.332. Dissertationes Forestales
  1. Männistö E, Ylänne H, Losoi M, Keinänen M, Yli-Pirilä P, Korrensalo A, Bäck J, Hellén H, Virtanen A, Tuittila E-S (2022) Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition. Sci Total Environ 159809. https://doi.org/10.1016/j.scitotenv.2022.159809.
  1. Neefjes, I., Laapas, M., Liu, Y., Medus, E., Miettunen, E., Ahonen, L., Quelever, L., Aalto, J., Bäck, J., Kerminen, V-M., Lampilahti, J., Luoma, K., Mäki, M., Mammarella, I., Petäjä, T., Räty, M., Sarnela, N., Ylivinkka, I., Hakala, S., ... Lintunen, A. (2022). 25 years of atmospheric and ecosystem measurements in a boreal forest - Seasonal variation and responses to warm and dry years. Boreal Environment Research27, 1-31. http://www.borenv.net/BER/archive/vol_27.html
  1. Peltola, O., Aurela, M., Launiainen, S., & Katul, G. (2022). Probing eddy size and its effective mixing length in stably stratified roughness sublayer flows. Quarterly Journal of the Royal Meteorological Society.
  1. Petäjä, T., Tabakova, K., Manninen, A., Ezhova, E., O'Connor, E., Moisseev, D., Sinclair, V., Backman, J., Levula, J., Luoma, K., Virkkula, A., Paramonov, M., Räty, M., Äijälä, M., Heikkinen, L., Ehn, M., Sipilä, M., Yli-Juuti, T., Virtanen, A., ... Kerminen, V-M. (2022). Influence of biogenic emissions from boreal forests on aerosol-cloud interactions. Nature Geoscience15(1), 42-+. https://doi.org/10.1038/s41561-021-00876-0
  1. Pusfitasari, E. D., Ruiz-Jimenez, J., Heiskanen, I., Jussila, M., Hartonen, K., & Riekkola, M. L. (2022). Aerial drone furnished with miniaturized versatile air sampling systems for selective collection of nitrogen containing compounds in boreal forest. Science of the Total Environment, 808, 152011.
  1. Pysarenko, L., Krakovska, S., Savenets, M., Ezhova, E., Lintunen, A., Petäjä, T., Bäck, J., & Kulmala, M. (2022). Two-decade variability of climatic factors and its effect on the link between photosynthesis and meteorological parameters: example of Finland's boreal forest. Boreal Environment Research27, 131-144. http://www.borenv.net/BER/archive/vol_27.html#archive_archive
  1. Qiao, X., Li, X., Yan, C., Sarnela, N., Yin, R., Guo, Y., ... & Jiang, J. (2023). Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method. Environmental Science: Atmospheres.
  1. Qu, Z., Li, X., Ge, Y., Palviainen, M., Zhou, X., Heinonsalo, J., Berninger, F., Pumpanen, J., Köster, K., & Sun, H. (2022). The impact of biochar on wood‑inhabiting bacterial community and its function in a boreal pine forest. Environmental microbiome17(1), [45]. https://doi.org/10.1186/s40793-022-00439-9
  1. Quéléver, L. (2022). Aerosol Particles and their Gas-Phase Precursors in Cold Environments: From Simulated Experiments to Polar Field Observations.  Report Series in Aerosol Science 256. Väitöskirja.
  1. Rajewicz P.A. (2022). Methodological and mechanistic context for the interpretation of leaflevel spectral chlorophyll-a fluorescence. Dissertationes Forestales 330, 66 p. https://doi.org/10.14214/df.330. Väitöskirja.
  1. Rajewicz, P. A., Zhang, C., Atherton, J., Van Wittenberghe, S., Riikonen, A., Magney, T., ... & Porcar-Castell, A. The Photosynthetic Response of Spectral Chlorophyll Fluorescence Differs Across Species and Light Environments in a Boreal Forest Ecosystem. Available at SSRN 4170451.
  1. Rissanen, K., Aalto, J., Gessler, A., Hölttä, T., Rigling, A., Schaub, M., & Bäck, J. (2022). Drought effects on volatile organic compound emissions from Scots pine stems. Plant, Cell and Environment45(1), 23-40. https://doi.org/10.1111/pce.14219
  1. Rusanen, A., Hõrrak, K., Ahonen, L. R., Nieminen, T., Aalto, P. P., Kolari, P., Kulmala, M., Petäjä, T., and Junninen, H.: SMEARcore – Modular data infrastructure for atmospheric measurement stations, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-67, in review, 2022.
  1. Ryhti, K. (2022). Belowground carbon dynamics in Scots pine stands. Dissertationes Forestales 333. 47 p. https://doi.org/10.14214/df.333. Väitöskirja.
  1. Ryhti K, Schiestl-Aalto P, Tang Y, Rinne-Garmston K, Ding Y, Pumpanen J, Biasi C, Saurer M, Bäck J, Kulmala L (2022). Effects of variable temperature and moisture conditions on respiration and nonstructural carbohydrate dynamics of tree roots. Agricultural and Forest Meteorology 323: 109040.
  1. Schraik, D. (2022). Clumping in Forest Radiation Regime Models. Aalto University publication series DOCTORAL THESES, 149/2022. Väitöskirja.
  1. Sinclair, V. A., Ritvanen, J., Urbancic, G., Statnaia, I., Batrak, Y., Moisseev, D., & Kurppa, M. (2022). Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations. Atmospheric Measurement Techniques, 15(10), 3075-3103.
  1. Skyttä, A., Gao, J., Cai, R., Ehn, M., Ahonen, L. R., Kurten, T., Wang, Z., Rissanen, M. P., & Kangasluoma, J. (2022). Isomer-Resolved Mobility-Mass Analysis of alpha-Pinene Ozonolysis Products. Journal of Physical Chemistry A126(30), 5040-5049. https://doi.org/10.1021/acs.jpca.2c03366
  1. Stolzenburg, D., Ozon, M., Kulmala, M., Lehtinen, K. E., Lehtipalo, K., & Kangasluoma, J. (2022). Combining instrument inversions for sub-10 nm aerosol number size-distribution measurements. Journal of Aerosol Science, 159, 105862.
  1. Su, P., Joutsensaari, J., Dada, L., Zaidan, M. A., Nieminen, T., Li, X., Wu, Y., Decesari, S., Tarkoma, S., Petäjä, T., Kulmala, M., and Pellikka, P.: New particle formation event detection with Mask R-CNN, Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, 2022.
  1. Sulo, J., Lampilahti, J., Chen, X., Kontkanen, J., Nieminen, T., Kerminen, V-M., Petäjä, T., Kulmala, M., & Lehtipalo, K. (2022). Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest. Atmospheric Chemistry and Physics22(23), 15223-15242. https://doi.org/10.5194/acp-22-15223-2022
  1. Tang, Y., Sahlstedt, E., Young, G., Schiestl-Aalto, P., Saurer, M., Kolari, P., Jyske, T., Bäck, J., & Rinne-Garmston, K. T. (2022). Estimating intraseasonal intrinsic water-use efficiency from high-resolution tree-ring delta C-13 data in boreal Scots pine forests. New Phytologisthttps://doi.org/10.1111/nph.18649
  1. Tang, Y., Schiestl-Aalto, P., Saurer, M., Sahlstedt, E., Kulmala, L., Kolari, P., Ryhti, K., Salmon, Y., Jyske, T., Ding, Y., Bäck, J., & Rinne‐Garmston , K. T. (2022). Tree organ growth and carbon allocation dynamics impact the magnitude and δ13C signal of stem and soil CO2 fluxes. Tree Physiology42(12). https://doi.org/10.1093/treephys/tpac079
  1. Thomas, S. J., Li, H., Praplan, A. R., Hellén, H., & Bianchi, F. (2022). Complexity of downy birch emissions revealed by Vocus proton transfer reaction time-of-flight mass spectrometer. Frontiers in Forests and Global Change.
  1. Thompson, R. L., Groot Zwaaftink, C. D., Brunner, D., Tsuruta, A., Aalto, T., Raivonen, M., Crippa, M., Solazzo, E., Guizzardi, D., Regnier, P., & Maisonnier, M. (2022). Effects of extreme meteorological conditions in 2018 on European methane emissions estimated using atmospheric inversions. Philosophical Transactions-Royal Society of London. Physical Sciences and Engineering 380(2215), [20200443]. https://doi.org/10.1098/rsta.2020.0443
  1. Travova, S.V., Stepanenko, V.M., Medvedev, A.I. et al. Quality of Soil Simulation by the INM RAS–MSU Soil Scheme as a Part of the SL-AV Weather Prediction Model. Russ. Meteorol. Hydrol. 47, 159–173 (2022). https://doi.org/10.3103/S1068373922030013
  1. Vaeltava puu. https://journal.fi/rae/article/view/116994/71081
  1. Vainio, E., Haikarainen, I. P., Machacova, K., Putkinen, A., Santalahti, M., Koskinen, M., Fritze, H., Tuomivirta, T., & Pihlatie, M. (2022). Soil-tree-atmosphere CH4 flux dynamics of boreal birch and spruce trees during spring leaf-out. Plant and Soil478, 391–407. https://doi.org/10.1007/s11104-022-05447-9
  1. Vermeuel, M. P., Novak, G. A., Kilgour, D. B., Claflin, M. S., Lerner, B. M., Trowbridge, A. M., ... & Bertram, T. H. (2022). Observations of biogenic volatile organic compounds over a mixed temperate forest during the summer to autumn transition. EGUsphere, 1-44.
  1. Vesala, T., Kohonen, K-M., Kooijmans, L. M. J., Praplan, A. P., Foltynova, L., Kolari, P., Kulmala, M., Bäck, J., Nelson, D., Yakir, D., Zahniser, M., & Mammarella, I. (2022). Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest. Atmospheric Chemistry and Physics22(4), 2569-2584. https://doi.org/10.5194/acp-22-2569-2022
  1. Virkkala, A-M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K., Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C., Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M., Holl, D., Iwata, H., Kobayashi, H., Kolari, P., ... Zyryanov, V. I. (2022). The ABCflux database: Arctic-boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth system science data14(1), 179-208. https://doi.org/10.5194/essd-14-179-2022
  1. Wang, X., Chen, J. M., Ju, W., & Zhang, Y. (2022). Seasonal variations in leaf maximum photosynthetic capacity and its dependence on climate factors across global FLUXNET sites. Journal of Geophysical Research: Biogeosciences, 127(5), e2021JG006709.
  1. Xavier, C. (2022). Detailed model studies on new particle formation and relevant precursors in chamber experiments and ambient atmosphere. REPORT SERIES IN AEROSOL SCIENCE 254. Väitöskirja.
  1. Xu, R., Thornton, J. A., Lee, B. H., Zhang, Y., Jaeglé, L., Lopez-Hilfiker, F. D., Rantala, P., and Petäjä, T.: Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products, Atmos. Chem. Phys., 22, 5477–5494, https://doi.org/10.5194/acp-22-5477-2022, 2022.
  1. Yuan, K., Zhu, Q., Li, F., Riley, W. J., Torn, M., Chu, H., McNicol, G., Chen, M., Knox, S., Delwiche, K., Wu, H., Baldocchi, D., Ma, H., Desai, A. R., Chen, J., Sachs, T., Ueyama, M., Sonnentag, O., Helbig, M., ... Jackson, R. (2022). Causality guided machine learning model on wetland CH4 emissions across global wetlands. Agricultural and Forest Meteorology324https://doi.org/10.1016/j.agrformet.2022.109115
  1. Ylivinkka, I. 2022. Insights tocarbon-based terrestrial climate feedback mechanisms. Report Series in Aerosol Science 251. Väitöskirja