Publications of our group.

197. Song C, Matlashov ME, Shcherbakova DM, Antic SD, Verkhusha VV, Knöpfel T. Characterization of two near-infrared genetically encoded voltage indicators. Neurophotonics 2024, 11(2): 024201.


196. Pennacchietti F, Alvelid J, Morales RA, Damenti M, Ollech D, Oliinyk OS, Shcherbakova DM, Villablanca EJ, Verkhusha VV, Testa I. Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organismsNature Communications 2023, 14: 8402.

195. Karasev MM, Verkhusha VV, Shcherbakova DM. Near-Infrared Optogenetic Module for Conditional Protein Splicing. Journal of Molecular Biology 2023, 24:168360.

194. Vu T, Klippel P, Canning AJ, Ma C, Zhang H, Kasatkina LA, Tang Y, Xia J, Verkhusha VV, Vo-Dinh T, Jing Y. On the importance of low-frequency signals in functional and molecular photoacoustic computed tomography. IEEE Transactions on Medical Imaging 2023, Early Access.

193. Oliinyk OS, Pletnev S, Baloban M, Verkhusha VV. Development of bright red‐shifted miRFP704nano using structural analysis of miRFPnano proteins. Protein Science 2023, 8: e4709.

192. Chernov KG, Manoilov KY, Oliinyk OS, Shcherbakova DM, Verkhusha VV. Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed ChromophoreInternational Journal of Molecular Sciences 2023, 24: 6526.

191. Oliinyk OS, Ma C, Pletnev S, Baloban M, Toboada C, Sheng H, Yao J, Verkhusha VV. Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein. Nature Methods 2023, 20: 70.


190. Teijeira A, Garasa S, Luri-Rey C, de Andrea C, Gato M, Molina C, Kaisho T, Cirella A, Azpilikueta A, Wculek SK, Egea J, Olivera I, Rodriguez I, Rouzaut A, Verkhusha VV, Valencia K, Sancho D, Berraondo P, Melero I. Depletion of Conventional Type-1 Dendritic Cells in Established Tumors Suppresses Immunotherapy EfficacyCancer Research 2022, 82: 4373.

189. Karasev MM, Baloban M, Verkhusha VV, Shcherbakova DM. Nuclear Localization Signals for Optimization of Genetically Encoded Tools in Neurons. Frontiers in Cell and Developmental Biology 2022, 10: 931237.

188. Matlashov ME, Vera J, Kasatkina LA, Khodakhah K, Verkhusha VV. Design and initial characterization of a small near-infrared fluorescent calcium indicator. Frontiers in Cell and Developmental Biology 2022, 10: 880107.

187. Malogolovkin A, Egorov A, Karabelsky A, Ivanov RA, Verkhusha VV. Optogenetic technologies in translational cancer research. Biotechnology Advances 2022, 60: 108005.

186. Leopold AV, Thankachan S, Yang C, Gerashchenko D, Verkhusha VV. A general approach for engineering RTKs optically controlled with far-red light. Nature Methods 2022, 19: 871.

185. Barykina NV, Karasev MM, Verkhusha VV, Shcherbakova DM. Technologies for large-scale mapping of functional neural circuits active during a user-defined time window. Progress in Neurobiology 2022, 216: 102290.

184. Kasatkina LA, Verkhusha VV. Transgenic mice encoding modern imaging probes: Properties and applications. Cell Reports 2022, 39(8): 110845.

183. Oliinyk OS, Baloban M, Clark CL, Carey E, Pletnev S, Nimmerjahn A, Verkhusha VV. Single-domain near-infrared protein provides a scaffold for antigen-dependent fluorescent nanobodies. Nature Methods 2022, 19: 740.

182. Kasatkina LA, Ma C, Matlashov ME, Vu T, Li M., Kaberniuk AA, Yao J, Verkhusha VV. Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model. Nature Communications 2022, 13: 2813.

181. Li M, Beaumont N, Ma C, Rojas J, Vu T, Harlacher M, O’Connell G, Gessner RC, Kilian H, Kasatkina L, Chen Y, Huang Q, Shen X, Lovell JF, Verkhusha VV, Czernuszewicz T, Yao J. Three-dimensional Deep-tissue Functional and Molecular Imaging by Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT). IEEE Transactions on Medical Imaging 2022, 41: 2704.

180. Reshetnikov VV, Smolskaya SV, Feoktistova SG, Verkhusha VV. Optogenetic approaches in biotechnology and biomaterials. Trends in Biotechnology 2022, 40: 858.

179. Manoilov KY, Ghosh A, Almo SC, Verkhusha VV. Structural and functional characterization of a biliverdin-binding near-infrared fluorescent protein from the serpin superfamily. Journal of Molecular Biology 2022, 434: 167359.


178. Li L, Hsu HC, Verkhusha VV, Wang LV, Shcherbakova DM. Multiscale photoacoustic tomography of a genetically encoded near-infrared FRET biosensor. Advanced Science 2021, 8: 2102474.

177. Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nature Methods 2021, 18: 1027–1037.

176. Shcherbakova DM. Near-infrared and far-red genetically encoded indicators of neuronal activity. Journal of Neuroscience Methods 2021, 362: 109314.

175. Kaberniuk AA, Baloban M, Monakhov MV, Shcherbakova DM, Verkhusha VV. Single-component near-infrared optogenetic systems for gene transcription regulation. Nature Communications 2021, 12: 3859.

174. Lee D, Qian C, Wang H, Li L, Miao K, Du J, Shcherbakova DM, Verkhusha VV, Wang LV, Wei L. Toward photoswitchable electronic pre-resonance stimulated Raman probes. The Journal of Chemical Physics 2021, 154: 135102.

173. Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, Matlashov ME, Li X, Yang W, Nie L, Shcherbakova DM, Kozorovitskiy Y, Yao J, Ji N, Verkhusha VV. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nature Biotechnology 2021, 39: 368–377.

172. Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JT. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Communications Chemistry 2021, 4, 3.


171. Monakhov MV, Matlashov ME, Colavita M, Song C, Shcherbakova DM, Antic SD, Verkhusha VV, Knöpfel T. Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins. ACS Chemical Neuroscience 2020, 11(21): 3523-3531.

170. Leopold AV, Verkhusha VV. Light control of RTK activity: from technology development to translational research. Chemical Science 2020, 11(37):10019-10034.

169. Leopold AV, Pletnev S, Verkhusha VV. Bacterial phytochrome as a scaffold for engineering of receptor tyrosine kinases controlled with near-infrared light. Journal of Molecular Biology 2020, 432(13): 3749-3760.

168. Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, Moore HM, Vartiainen MK, Hodgson L, Verkhusha VV. Optogenetic regulation of endogenous proteins. Nature Communications 2020, 11, 605.

167. Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, Shemetov AA, Testa I, Verkhusha VV. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nature Communications 2020, 11, 239.


166. Yang J, Li L, Shemetov AA, Lee S, Zhao Y, Liu Y, Shen Y, Li J, Oka Y, Verkhusha VV, Wang LV. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Science Advances 2019, 1;5(12):eaay1211.

165. Leopold AV, Shcherbakova DM, Verkhusha VV. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. Frontiers in Cellular Neuroscience 2019, 13: 474.

164. Marcus J, Bejerano-Sagie M, Patterson N, Bagchi S, Verkhusha VV, Connolly D, Goldberg GL, Golden A, Sharma VP, Condeelis J, Montagna C. Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 2019, 38(30): 5839-59.

163. Leopold AV, Chernov KG, Shemetov AA, Verkhusha VV. Neurotrophin receptor tyrosine kinases regulated with near-infrared light. Nature Communications 2019, 10(1): 1129.

162. Karasev MM, Stepanenko OV, Rumyantsev KA, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins and Their Applications. Biochemistry (Moscow) 2019, 84: S32-S50.

161. Buhrke D, Tavraz NN, Shcherbakova DM, Sauthof L, Moldenhauer M, Escobar FV, Verkhusha VV, Hildebrandt P, Friedrich T. Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins. Scientific Reports 2019, 9(1): 1866.

160. Oliinyk OS, Shemetov AA, Pletnev S, Shcherbakova DM, Verkhusha VV. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nature Communications 2019, 10(1): 279.


159. Peng Q, Lu S, Shi Y, Pan Y, Limsakul P, Chernov AV, Qiu J, Chai X, Shi Y, Wang P, Ji Y, Li YJ, Strongin AY, Verkhusha VV, Belmonte JCI, Ren B, Wang Y, Chien S, Wang Y. Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proceedings of the National Academy of Sciences 2018, 115(50): E11681-90.

158. Kaberniuk AA, Mohr MA, Verkhusha VV, Snapp EL. moxMaple3: a Photoswitchable Fluorescent Protein for PALM and Protein Highlighting in Oxidizing Cellular Environments. Scientific Reports 2018; 8(1): 14738.

157. Liu W, Shcherbakova DM, Kurupassery N, Li Y, Zhou Q, Verkhusha VV, Yao J. Quad-mode functional and molecular photoacoustic microscopy. Scientific Reports 2018, 8(1): 11123.

156. Pennacchietti F, Serebrovskaya EO, Faro AR, Shemyakina II, Bozhanova NG, Kotlobay AA, Gurskaya NG, Bodén A, Dreier J, Chudakov DM, Lukyanov KA. Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy. Nature Methods 2018, 15(8): 601.

155. Liu W, Shcherbakova DM, Kurupassery N, Li Y, Zhou Q, Verkhusha VV, Yao J. Quad-mode functional and molecular photoacoustic microscopy. Scientific Reports 2018, 8(1): 11123.

154. Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends in Biotechnology 2018, 36(12): 1230-1243.

153. Li L, Shemetov AA, Baloban M, Hu P, Zhu L, Shcherbakova DM, Zhang R, Shi J, Yao J, Wang LV, Verkhusha VV. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nature Communications 2018, 9(1):2734.

152. Shcherbakova DM, Kaberniuk AA, Redchuk TA, Verkhusha VV. Engineering of Bacterial Phytochromes for Near-Infrared Imaging, Sensing and Light-Control in Mammals. Biophysical Journal 2018, 114(3):401a.

151. Redchuk TA, Karasev MM, Omelina ES, Verkhusha VV. Near‐Infrared Light‐Controlled Gene Expression and Protein Targeting in Neurons and Non‐neuronal Cells. ChemBioChem 2018, 19(12):1334-40.

150. Redchuk TA, Kaberniuk AA, Verkhusha VV. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nature Protocols 2018, 13: 1121-1136.

149. Shcherbakova DM, Cammer NC, Huisman TM, Verkhusha VV, Hodgson L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nature Chem. Biol. 2018, 14: 591-600

148. Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem. Soc. Rev. 2018, 47(7), 2454-2484


147. Piatkevich K.D., Suk H.-J., Kodandaramaiah S.B., Yoshida F., DeGennaro E.M., Drobizhev M., Hughes T.E., Desimone R., Boyden E.S. and Verkhusha V.V. Near-infrared fluorescence proteins engineered from bacterial photochromes in neuroimaging. Biophys. J. 2017, 113(10), 2299-2309.

146. Oliinyk O.S., Chernov K.G., Verkhusha V.V. Bacterial phytochromes, cyanobacteriochromes and allophycocyanins as a source of near-infrared fluorescent probes. Intl. J. Mol. Sci. 2017, 18: 1691.

145. Zanca C., Villa G., Benitez J., Thorne A.H., Koga T., Verkhusha V.V., Mischel P., Cavenee W., Furnari F. Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity. Genes & Development 2017, 31(12), 1212-1227.

144. Shemetov A.A., Oliinyk, O.S., Verkhusha V.V. How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem. Biol. 2017, 24: 758–766.

143. Baloban M., Shcherbakova D.M., Pletnev S., Pletnev V.Z. Lagarias J.C., Verkhusha V.V. Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies. Chem. Science 2017, 8: 4546-4557.

142. Chernov K.G., Redchuk T.A., Omelina E.S., Verkhusha V.V. Near-infrared fluorescent proteins, biosensors and optogenetic tools engineered from phytochromes. Chem. Reviews 2017, 117: 6423-6446.

141. Chernov K.G., Neuvonen M., Brock I.I., Ikonen E.M., Verkhusha V.V. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells. J. Biol. Chem. 2017, 292: 8811-8822.

140. Redchuk T.A., Omelina E.S., Chernov K.G., Verkhusha V.V. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nature Chem. Biol. 2017, 13: 633-639.

139. Stepanenko O.V., Stepanenko O.V., Kuznetsova I.M., Shcherbakova D.M., Verkhusha V.V., Turoverov K.K. Interaction of biliverdin chromophore with near-infrared fluorescent protein BphP1-FP engineered from bacterial phytochrome. Intl. J. Mol. Sci. 2017, 18: 1009.

138. Kaberniuk A.A., Morano N., Verkhusha V.V., Snapp E.L. moxDendra2: an inert photoswitchable protein for oxidizing environments. Chem. Communications 2017, 53: 2106-2109.

137. Stepanenko O.V., Bublikov G.S., Kuznetsova I.M., Verkhusha V.V., Turoverov K.K. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore. J. Mol. Struct. 2017, 1140: 22-31.

136. Fluegen G., Avivar-Valderas A., Wang Y., Padgen M.R., Williams J.K., Verkhusha V., Cheung J.F., Entenberg D., Castracane J., Keely P., Condeelis J., and Aguirre-Ghiso J. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biol. 2017, 19: 120-132.


135. Lychagov V.V., Shemetov A.A., Jimenez R., and Verkhusha V.V. Microfluidic system for in-flow reversible photoswitching of near-infrared fluorescent proteins. Analytical Chemistry 2016, 88: 11821-11829.

134. Hontani Y., Shcherbakova D.M., Baloban M., Zhu J., Verkhusha V.V. and Kennis J.T.M. Bright blue-shifted fluorescent proteins with Cys in GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Scientific Reports 2016, 6: 37362.

133. Rumyantsev K.A., Turoverov K.K., and Verkhusha V.V. Near-infrared bioluminescent proteins for two-color multimodal imaging. Scientific Reports 2016, 6: 36588.

132. Yao J., Kaberniuk A.A., Li L., Shcherbakova D.M., Zhang R., Wang L., Li G., Verkhusha V.V. and Wang L.H. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nature Methods 2016, 13: 67-73.

131. Shcherbakova D.M., Baloban M., Emelyanov A.V., Brenowitz M., Guo P. and Verkhusha V.V. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nature Communications 2016, 7: 12405.

130. Konold P.E., Yoon E., Lee J., Chapagain P.P., Gerstman B.S., Regmi C.K., Piatketvich K.D., Verkhusha V.V., Joo T. and Jimenez R.Fluorescence from multiple chromophore hydrogen-bonding states in the far-red protein TagRFP675. J. Phys. Chem. Lett. 2016, 7: 3046-3051.

129. Kaberniuk A.A., Shemetov A.A. and Verkhusha V.V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nature Methods 2016, 13: 591-597.

128. Champa D., Orlacchio A., Patel B., Ranieri M., Shemetov A.A., Verkhusha V.V., Cuervo A.M. and Cristofano A.D. Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis. Oncotarget 2016, 7: 34453-34471.

127. Stepanenko O.V., Baloban M., Bublikov G.S., Shcherbakova D.M., Stepanenko O.V., Turoverov K.K., Kuznetsova I.M. and Verkhusha V.V. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes. Scientific Reports 2016, 6: 18750.


126. Rumyantsev K.A., Shcherbakova D.M., Zakharova N.I., Emelyanov A.V., Turoverov K.K. and Verkhusha V.V. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence. Scientific Reports 2015, 5: 18348.

125. Shcherbakova D.M., Baloban M., Pletnev S., Malashkevich V.N., Xiao H., Dauter Z. and Verkhusha V.V. Molecular basis of spectral diversity in near-infrared phytochrome-based fluorescent proteins. Chemistry & Biology 2015, 22: 1540–1551.

124. Zhu J., Shcherbakova D.M., Hontani Y., Verkhusha V.V. and Kennis J.T.M. Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes. Scientific Reports 2015, 5: 12840.

123. Costantini L.M., Baloban M., Markwardt M.L., Rizzo M., Guo F., Verkhusha V.V. and Snapp E.L. A palette of fluorescent proteins optimized for diverse cellular environments. Nature Communications 2015, 6: 7670 doi:10.1038/ncomms8670.

122. Shcherbakova D.M., Baloban M. and Verkhusha V.V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 2015, 27: 52–63.

121. Shcherbakova D.M., Shemetov A.A., Kaberniuk A.A. and Verkhusha V.V.. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 2015, 84: 519-550.

120. Telford W.G., Shcherbakova D.M., Buschke D., Hawley T.S. and Verkhusha V.V.. Multiparametric flow cytometry using near-infrared fluorescent proteins engineered from bacterial phytochromes. PLoS ONE 2015, 10: e0122342.

119. Rice W.L., Shcherbakova D.M., Verkhusha V.V. and Kumar A.T.N. In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast. Cancer Res. 2015, 75: 1236-1243


118. Stepanenko Olesya V., Stepanenko Olga V., Kuznetsova I.M., Verkhusha V.V. and Turoverov K.K. Sensitivity of superfolder GFP to ionic agents. PLoS ONE 2014, 9: e110750. doi:10.1371/journal.pone.0110750

117. Piatkevich K.D., English B.P., Malashkevich V.N., Xiao H., Almo S.C., Singer R.H. and Verkhusha V.V. Photoswitchable red fluorescent protein with a large Stokes shift. Chemistry & Biology. 2014, 21: 1402-1414.

116. Yao J., Shcherbakova D.M., Li C., Krumholz A., Lorca R.A., Reinl E., England S.K., Verkhusha V.V. and Wang L.V. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J. Biomed. Opt. 2014, 19: 086018.

115. Pletnev S., Shcherbakova D.M., Subach O.M., Pletneva N.V., Malashkevich V.N., Almo S.C., Dauter Z. and Verkhusha V.V. Orange fluorescent proteins: structural studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS ONE 2014, 9: e99136. doi:10.1371/journal.pone.0099136

114. Nedosekin D.A., Verkhusha V.V. Melerzanov A.V., Zharov V.P. and Galanzha E.I. In vivo photoswitchable flow cytometry for direct tracking of single circulating tumor cells. Chemistry & Biology. 2014, 21: 792-801.

113. Denisova O.V., Söderholm S., Virtanen S., … Verkhusha V.V. and and Kainov D.E. Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob. Agents Chemother. 2014, 58: 3689-3696

112. Shcherbakova D.M., Sengupta P., Lippincott-Schwartz J. and Verkhusha V.V. Photocontrollable fluorescent proteins for superresolution imaging. Annu. Rev. Biophys.2014, 43: 303-329.

111. Shcherbakova D.M. and Verkhusha V.V. Chromophore chemistry of fluorescent proteins controlled by light. Curr. Opin. Chem. Biol. 2014, 20: 60-68.

110. Stepanenko Olesya V., Bublikov G.S., Stepanenko Olga V., Shcherbakova D.M., Verkhusha V.V., Turoverov K.K. and Kuznetsova I.M. A knot in the protein structure – probing the near-infrared fluorescent protein iRFP designed from a bacterial phytochrome. FEBS Journal. 2014, 281:2284-2298.

109. Krumholz A., Shcherbakova D.M., Xia, J., Wang L.V. and Verkhusha V.V. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Scientific Reports 2014, 4: 3939. doi:10.1038/srep03939

108. Pletnev S., Subach F.V., Verkhusha V.V. and Dauter Z. The rotational order-disorder structure of the reversibly photoswitchable red fluorescent protein rsTagRFP. Acta Crystallogr. D2014, 70: 31-39.

107. Galanzha E.I., Nedosekin D.A., Sarimollaoglu M., Orza A.I., Biris A.S., Verkhusha V.V. and Zharov V.P. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J. Biophotonics 2014, 7: in press. doi: 10.1002/jbio.201300140.


106. Filonov G. S. and Verkhusha V.V. A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chemistry & Biology 2013, 20: 1078-1086.

105. Hartwich T.M., Subach F.V., Cooley L., Verkhusha V.V. and Bewersdorf J. Determination of two-photon photoactivation rates of fluorescent proteins. Phys. Chem. Chem. Phys. 2013, 15: 14868-14872.

104. Piatkevich, K.D., Subach F.V. and Verkhusha V.V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nature Communications2013, 4: 2153 doi:10.1038/ncomms3153.

103. Shcherbakova D.M. and Verkhusha V.V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods 2013, 10: 751-754.

102. Piatkevich K.D., Malashkevich V.N., Morozova K.S., Nemkovich N.A., Almo S.C. and Verkhusha V.V. Extended Stokes shift in fluorescent proteins: chromophore - protein interactions in a near-infrared TagRFP675 variant. Scientific Reports 2013, 3: 1847. doi:10.1038/srep01847.

101. Piatkevich K.D., Subach F.V. and Verkhusha V.V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 2013,42:3441-3452.

100. Stepanenko Olesya V., Stepanenko Olga V., Kuznetsova I.M., Verkhusha V.V. and Turoverov K.K. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Int. Rev. Cell Mol. Biol. 2013, 302: 221-278.

99. Costantini L.M., Subach O.M., Jaureguiberry-bravo M., Verkhusha V.V. and Snapp E.L. Cysteineless non-glycosylated monomeric blue fluorescent protein, secBFP2, for studies in the eukaryotic secretory pathway. Biochem. Biophys. Res. Commun. 2013, 430: 1114–1119.


98. Telford W.G., Hawley T.,Subach F., Verkhusha V.V. and Hawley R.G. Flow cytometry of fluorescent proteins. Methods 2012, 56: 318-330.

97. Stepanenko Olesya V. Stepanenko Olga V., Kuznetsova I.M., Shcherbakova D.M.,Verkhusha V.V. and Turoverov K.K. Distinct effects of guanidine thiocyanate on the structure of superfolder GFP. PLoS ONE 2012, 7: e48809. doi: 10.1371/journal.pone.0048809.

96 . Miyawaki A., Shcherbakova D.M. and Verkhusha V.V..Red fluorescent proteins: chromophore formation and cellular applications. Curr. Opin. Struct. Biol. 2012, 22: 679-688.

95. Salomonnson E., Mihalko L.A.,Verkhusha V.V. , Luker K.E. and Luker G.D. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy. J. Biomed. Opt.2012, 17: 96001.

94. Nedosekin D.A., Sarimollaoglu M., Galanzha E.I., Sawant R., Torchilin V.P.,Verkhusha V.V. , Ma J., Frank M.H., Biris A.S. and Zharov V.P. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts. J. Biophotonics, 2013, 6: 425-434.

93. Subach O.M., Entenberg D., Condeelis J.S. and Verkhusha V.V. A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics. J. Am. Chem. Soc. 2012, 134: 14789-14799.

92. Shcherbakova D.M., Subach O.M. and Verkhusha V.V. Red fluorescent proteins: advanced imaging applications and future design. Angew. Chem. Int. Ed. 2012, 51: 10724-10738.

91. Subach F.M. and Verkhusha V.V. Chromophore transformations in red fluorescent proteins. Chemical Reviews 2012, 112: 4308-4327.

90. Shcherbakova D.M., Hink M.A., Joosen L., Gadella T.W.J. and Verkhusha V.V. An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J. Am. Chem. Soc., 2012, 134: 7913-7923.

89. Pletnev S., Subach F.V., Dauter Z., Wlodawer A. and Verkhusha V.V. A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J. Mol. Biol., 2012, 417: 144-151.

88. Bravaya K.B., Subach O.M., Verkhusha V.V. and Krylov A.I. Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: the elusive blue intermediate revealed. J. Am. Chem. Soc. 2012, 134: 2807-2814.

87. Filonov G.S., Krumholz A., Xia J., Yao J., Wang L.V. and Verkhusha V.V. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. Angew. Chem. Int. Ed. 2012, 51: 1448-1451.


86. Subach O.M, Cranfill P.J., Davidson W.M. and Verkhusha V.V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE 2011, 6: e28674. doi:10.1371/journal.pone.0028674

85. Subach F.V., Piatkevich K.D. and Verkhusha V.V. Directed molecular evolution to design advanced red fluorescent proteins. Nature Methods 2011, 8: 1019-1026.

84. Stepanenko Olesya V., Stepanenko Olga V., Shcherbakova D.M., Kuznetsova I.M., Turoverov K.K., and Verkhusha V.V. Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques. 2011, 51: 313-327.

83. Gunewardene M.S., Subach F.V., Gould T.J., Penoncello G.P., Gudheti M.V., Verkhusha V.V. and Hess S.T. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys. J. 2011, 101: 1522-1528.

82. Entenberg D., Wyckoff J., Gligorijevic B., Roussos E., Verkhusha V.V. Pollard J.W. and Condeelis J. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nature Protocols. 2011, 6: 1500-1520.

81. Subach O.M., Patterson G.H., Ting L.-M., Wang Y., Condeelis J.S. and Verkhusha V.V. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods. 2011, 8: 771-777.

80. Filonov G.S., Piatkevich K.D., Ting L.-M., Zhang J., Kim K. and Verkhusha V.V. Bright and stable near infra-red fluorescent protein for in vivo imaging. Nature Biotechnology. 2011, 29: 757-761.

79. Stepanenko O.V., Fonin A.V., Stepanenko O.V., Morozova K.M., Verkhusha V.V., Kuznetsova I.M., Turoverov K.K., Staiano M. and D'Auria S. New insight in protein-ligand interactions. 2. Stability and properties of two mutant forms of the d-galactose/d-glucose-binding protein from E. coli. J. Phys. Chem. B. 2011, 115: 9022-9032.

78. Koga H., Martinez-Vicente M., Macian F., Verkhusha V.V. and Cuervo A.M. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nature Communications. 2011, 2: 386 doi: 10.1038/ncomms1393.

77. Gudkov D.A., Lyagin I.V., Verkhusha V.V. and Efremenko E.N. Hybrid proteins with organophosphorous hydrolase activity and fluorescence of deGFP4 protein. Moscow Univ. Chem. Bull., 2011, 66: 92–98.

76. Piatkevich K.D. and Verkhusha V.V. Guide to red fluorescent proteins and biosensors for flow cytometry.Methods Cell Biol., 2011, 104: 431-461.

75. Wu B., Piatkevich K.D., Lionnet T., Singer R.H., and Verkhusha V.V. Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr. Opin. Cell Biol., 2011, 23: 310-317.


74. Stepanenko O.V., Kuznetsova I.M., Kuznetsova I.M., Verkhusha V.V., Staiano M.,D’Auria S., and Turoverov K.K. Denaturation of proteins with beta-barrel topology induced by guanidine hydrochloride. Spectrosc. Int. J. , 2010, 24: 367-373.

73. Piatkevich K.D., Malashkevich V.N., Almo S.C., and Verkhusha V.V. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift. J. Am. Chem. Soc. 2010, 132: 10762–10770.

72. Subach F.V., Zhang L., Gadella T.W.J., Gurskaya N.G., Lukyanov K.A., and Verkhusha V.V.Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chemistry & Biology (Cell press). 2010, 17: 745-755.

71. Morozova K.S., Piatkevich K.D., Gould T.G., Zhang J., Bewersdorf J., and Verkhusha V.V.Far-Red fluorescent protein excitable with red lasers for flow cytometry and super-resolution STED nanoscopy. Biophys. J. 2010, 99: L13-L15.

70. Piatkevich K.D., Efremenko E.N., Verkhusha V.V., and Varfolomeev S.D. Red fluorescent proteins and their properties. Russ. Chem. Rev. 2010, 79: 243-258.

69. Subach F.M., Patterson G.H., Renz M., Lippincott-Schwartz J., and Verkhusha V.V. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J. Am. Chem. Soc. 2010, 132: 6481-6491.

68. Subach O.M., Malashkevich V.N., Zencheck W.D., Morozova K.S., Piatkevich K.D., Almo S.C., and Verkhusha V.V. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chemistry & Biology (Cell press).2010, 17: 333-341.

67. Piatkevich K.D., Hulit J., Subach O.M., Wu B., Abdulla A., Segall J.E., and Verkhusha V.V.Monomeric red fluorescent proteins with a large Stokes shift. Proc. Natl. Acad. Sci. USA 2010, 107: 5369-5374.

66. Pletnev S., Subach F.V., Dauter Z., Wlodawer A., and Verkhusha V.V. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J. Am. Chem. Soc. 2010, 132: 2243-2253.

65. Piatkevich K.D. and Verkhusha V.V. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr. Opin. Chem. Biol. 2010, 14: 23-29.


64. Subach F.V., Malashkevich V.N., Zencheck W.D., Xiao H., Filonov G.S., Almo S.C., and Verkhusha V.V. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states. Proc. Natl. Acad. Sci. USA 2009, 106: 21097-21102.

63. Pletnev S., Morozova K.S., Verkhusha V.V., and Dauter Z. Rotational order-disorder structure of fluorescent protein FP480. Acta Crystallogr. D 2009, 65: 906-912.

62. He J., Vora M., Haney R.M., Filonov G.S., Musselman C.A., Burd C.G., Kutateladze A.G., Verkhusha V.V., Stahelin R.V., and Kutateladze T.G. Membrane insertion of the FYVE domain is modulated by pH. Proteins. 2009, 76: 852-860.

61. Bogdanov A.M., Mishin A.S., Yampolsky I.V., Belousov V.V., Chudakov D.M., Subach F.V., Verkhusha V.V., Lukyanov S., and Lukyanov K.A. Green fluorescent proteins are light-induced electron donors. Nature Chemical Biology. 2009, 5: 459-461.

60. Shcherbo D., Murphy C.S., Ermakova G.V., Solovieva E.A., Chepurnykh T.V., Shcheglov A.S., Verkhusha V.V., Pletnev V.Z., Hazelwood K.L., Roche P.M., Lukyanov S., Zaraisky A.G., Davidson M.W., and Chudakov D.M. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 2009, 418: 567-574.

59. Gould T.J., Verkhusha V.V., and Hess S.T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nature Protocols. 2009, 4: 291-308.

58. Subach F.V., Patterson G.H., Manley S., Gillette J.M., Lippincott-Schwartz J., and Verkhusha V.V. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods. 2009, 6: 153-159.

57. Telford W.G., Subach F.V., and Verkhusha V.V. Supercontinuum white light lasers for flow cytometry. Cytometry. 2009, 75A: 450-459.

56. Subach F.V., Subach O.M., Gundorov I.S., Morozova K.S., Piatkevich K.D., Cuervo A.M., and Verkhusha V.V. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nature Chemical Biology. 2009, 5: 118-126.


55. Lyagin I., Gudkov D., Verkhusha V., and Efremenko E. Genetic construct encoding the biosynthesis of N-His6-e-pHluorins-OPH in E.coli cells. In book: Chemical and Biochemical Physics, Kinetics and Thermodynamics: New Perspectives. (Scott P.E., Zaikov G.E., and Kablov V.F., Eds.), 2008, 83-90. Nova Science Publishers, NY, ISBN 1-60456-024-X.

54. Gould T.J., Gunewardene M.S., Gudheti M.V., Verkhusha V.V., Yin S.R., Gosse J.A., and Hess S.T. Nanoscale imaging of molecular positions and anisotropies. Nature Methods. 2008,5: 1027-1030.

53. Kedrin D., Gligorijevic B., Wyckoff J., Verkhusha V.V., Condeelis J., Segall J.E., and van Rheenen J. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods. 2008, 5: 1019-1021.

52. Stepanenko O.V., Verkhusha V.V., Kuznetsova I.M., Uversky V.N., and Turoverov К.К. Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Curr. Protein Pept. Sci. 2008, 9: 338-369.

51. Subach O.M., Gundorov I.S., Yoshimura M., Subach F.V., Zhang J., Grüenwald G., Souslova E.A., Chudakov D.M., and Verkhusha V.V. Conversion of red fluorescent protein into a bright blue probe. Chemistry & Biology (Cell press). 2008, 15: 1116-1124.

50. Stepanenko O.V., Verkhusha V.V., Shavlovsky M.M., Kuznetsova I.M., Uversky V.N., and Turoverov K.K. Understanding the role of Arg96 in structure and stability of green fluorescent protein. Proteins. 2008, 73: 539-551.

49. He J., Haney R.M., Vora M., Verkhusha V.V., Stahelin R.V., and Kutateladze T.G. Molecular mechanism of membrane targeting by the GRP1 PH domain. J. Lipid Res. 2008, 49, 1807-1815.

48. Pena P.V., Hom R.A., Hung T., Lin H., Kuo A.J., Wong R.P.C., Subach O.M., Champagne K.S., Zhao R., Verkhusha V.V., Li G., Gozani O., and Kutateladze T.G. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J. Mol. Biol. 2008, 380: 303-312.

47. Kapoor V., Karpov V., Linton C., Subach F.V., Verkhusha V.V., and Telford W.G. Solid state yellow and orange lasers for flow cytometry. Cytometry. 2008, 73A: 570-577.

46. Mishin A.S., Subach F.V., Yampolsky I.V., King W., Lukyanov K.A., and Verkhusha V.V.* The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemsitry. 2008, 47: 4666-4673. *Corresponding author


45. Stepanenko O.V., Verkhusha V.V., Kuznetsova I.M., and Turoverov K.K. Fluorescent proteins: physical-chemical properties and application in cell biology. Cytology. 2007, 49, 395-420.

44. Hom R.A, Vora M., Regner M., Subach O.M., Cho W., Verkhusha V.V., Stahelin R.V., and Kutateladze T.G. pH-dependent binding of the epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2-containing bilayers. J. Mol. Biol. 2007, 373, 412-423.

43. Kapoor V., Subach F.V., Kozlov V.G., Grudinin A., Verkhusha V.V., and Telford W.G. New lasers for flow cytometry: filling the gaps. Nature Methods. 2007, 4, 678-679.

42. Nevzglyadova O.V., Artemov A.V., Zenin V.V., Verkhusha V.V., Shavlovsky M.M., Povarova O.I., Stepanenko O.V., Kuznetsova I.M., and Turoverov K.K. Expression of recombinant actin 5C from Drosophila in the methylotrophic yeast Pichia pastoris. Cell Tissue Biol. 2007, 1, 248-258.


41. Pena P.V., Davrazou F., Shi X., Walter K., Verkhusha V.V., Gozani O., Zhao R., and Kutateladze T.G. Molecular mechanism of histone H3K4Me3 recognition by plant homeodomain of ING2. Nature. 2006, 442, 100-103.

40. Gurskaya N.G., Verkhusha V.V., Shcheglov A.S., Staroverov D.B., Chepurnykh T.V., Fradkov A.F., Lukyanov S., and Lukyanov K.A. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotechnol. 2006, 24: 461-465.


39. Lukyanov K.A., Chudakov D.M., Lukyanov S., and Verkhusha V.V.* Photoactivatable fluorescent proteins. Nature Rev. Mol. Cell Biol. 2005, 6: 885-891. *Corresponding author

38. Lee S.A., Eyeson R., Cheever M.L., Geng J., Verkhusha V.V., Burd C., Overduin M., and Kutateladze T.G. Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc. Natl. Acad. Sci. USA. 2005, 102, 13052-13057.

37. Stepanenko O.V., Verkhusha V.V., Shavlovsky M.M., Aleinikova T.D., Uversky V.N., Kuznetsova I.M., and Turoverov K.K. The role of quaternary structure in fluorescent protein stability. Cytology. 2005, 47, 1017-1027.

36. Verkhusha V.V.,* and Sorkin A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chemistry & Biology (Cell press). 2005, 12, 279-285.*Corresponding author


35. Stepanenko O.V., Verkhusha V.V., Kazakov V.I., Shavlovsky M.M., Kuznetsova I.M., Uversky V.N., and Turoverov K.K. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, dimer2 and DsRed. Biochemistry. 2004, 43, 14913-14923.

34. Galperin E.#, Verkhusha V.V.,# and Sorkin A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nature Methods. 2004, 1, 209-217. #Co-first author

33. Chudakov D.M.#, Verkhusha V.V.#, Staroverov D.B., Lukyanov S., and Lukyanov K.A. Photo-switchable fluorescent label for protein tracking. Nature Biotechnol. 2004, 22, 1435-1439. #Co-first author

32. Verkhusha V.V., Chudakov D.M., Gurskaya N.G., Lukyanov S., and Lukyanov K.A. Common pathway for the red chromophore formation in the fluorescent proteins and chromoproteins. Chemistry & Biology (Cell press).2004, 11, 845-854.

31. Verkhusha V.V.*, and Lukyanov K.A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnol. 2004, 22, 289-296. *Corresponding author


30. Verkhusha V.V.*, Pozhitkov A.E., Smirnov S.A., Borst J.W., van Hoek A., Klyachko N.L., Levashov A.V., and Visser A.J. Effect of high pressure and reversed micelles on the fluorescent proteins. Biochim. Biophys. Acta. 2003, 1622, 192-195. *Corresponding author

29. Verkhusha V.V.*, Kuznetsova I.M., Stepanenko O.V., Zaraisky A.G., Shavlovsky M.M., Turoverov K.K., and Uversky V.N. High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry. 2003, 42, 7879-7884. *Corresponding author

28. Bulina M.E.#, Verkhusha V.V.#, Staroverov D.B., Chudakov D.M., and Lukyanov K.A. Heterooligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins. Biochem. J. 2003, 371, 109-114. #Co-first author

27. Verkhusha V.V., Shavlovsky M.M., Nevzglyadova O.V., Gaivoronsky A.A., Artemov A.V., Stepanenko O.V., Kuznetsova I.M., and Turoverov K.K. Expression of recombinant GFP-actin fusion protein in the methylotrophic yeast P.pastoris. FEMS Yeast Res. 2003, 3, 105-111.

26. Verkhusha V.V.*, Matz M.V., Sakurai T., and Lukyanov K.A. GFP-like fluorescent proteins and chromoproteins of class Anthozoa. In book: Protein Structures: Kaleidoscope of Structural Properties and Functions. (Uversky V.N, Ed.). 2003, 405-439. Research Signpost Publishers. ISBN 81-7736-1775. *Corresponding author


25. Kuznetsova I.M., Stepanenko O.V., Stepanenko O.V., Povarova O.I., Biktashev A.G, Verkhusha V.V., Shavlovsky M.M., and Turoverov K.K. The place of inactivated actin and its kinetic predecessor in actin folding-unfolding. Biochemistry. 2002, 41, 13127-13132.

24. Fradkov A.F., Verkhusha V.V., Staroverov D.B., Bulina M.E., Yanushevich Y.G., Martynov V.I., Lukyanov S., and Lukyanov K.A. Far-red fluorescent tag for protein labelling. Biochem. J. 2002, 368, 17-21.

23. Turoverov K.K., Verkhusha V.V., Shavlovsky M.M., Biktashev A.G., Povarova O.I., and Kuznetsova I.M. Kinetics of actin unfolding induced by guanidine hydrochloride. Biochemistry.2002, 41, 1014-1019.


22. Verkhusha V.V.*, Akovbian N.A., Efremenko E.N., Varfolomeyev S.D., and Vrzheshch P.V. The kinetic analysis of maturation and denaturation of DsRed, a coral-derived red fluorescent protein. Biochemistry (Mosc). 2001, 66, 342-1351. *Corresponding author

21. Verkhusha V.V.*, Otsuna H., Awasaki T., Oda H., Tsukita S., and Ito K. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. J. Biol. Chem. 2001, 276, 29621­29624. *Corresponding author


20. Vrzheshch P.V.#, Abovikyan N.A., Varfolomeyev S.D., and Verkhusha V.V. # Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions. FEBS Letters. 2000, 487, 203-208. #Co-first author

19. Varfolomeyev, S.D., Efremenko, A.I., Verkhusha, V.V., and Vrzheshch, P.V. Synthetic amino acid analogues in cells and proteins. Moscow Univ. Chem. Bull. 2000, 41, 352-354.

18. Verkhusha V.V.*, Tsukita S., and Oda H. Analysis of cytoskeleton dynamics and cell migration in Drosophila ovaries using GFP-actin and E-cadherin-GFP fusion molecules. Proc. SPIE. 1999, 3604, 130-139. *Corresponding author

17. Verkhusha V.V.*, Tsukita S., and Oda H. Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovaries revealed by a GFP-actin fusion protein. FEBS Letters. 1999,445, 395-401. *Corresponding author

16. Potanin A.A., Verkhusha V.V., and Muller V.M. Disaggregation of particles with biospecific interactions in shear flow. J. Coll. Interface Sci. 1997, 188, 251-256.

15. Potanin A.A., Verkhusha V.V., and Muller V.M. Aggregate breakage of particles with biospecific interaction in a shear flow. Colloid J. 1996, 58, 355-362.

14. Takikawa O., Oku T., lto N., Ushio Y., Yamamoto N., Yoneda Y., Tsuji J., Sanchez-Bueno A., Verkhusha V.V., and Yoshida R. Multiple expression of Ly-6C and accumulation of Ly-6C pre-mRNA in activated macrophages involved in rejection of an allografted tumor. Biochem. Biophys. Res. Commun. 1996, 226, 247-253.

13. Sanchez-Bueno A., Verkhusha V.V., Takikawa O., Tanaka Y., and Yoshida R. Interferon-gamma dependent expression of inducible nitric oxide synthase, interleukin-12 and interferon-g-inducing factor in macrophages elicited by allografted tumor cells. Biochem. Biophys. Res. Commun. 1996, 224, 555-563.

12. Verkhusha V.V.*, Staroverov V.M., and Vrzheshch P.V. Model of cell adhesive interaction in liquid flow. Membr. Cell. Biol. 1995, 8, 455-470. *Corresponding author

11. Potanin A.A., Verkhusha V.V., Belokoneva O.S., and Wiegel F.W. Kinetics of ligand binding to a cluster of membrane-associated receptors. Eur. Biophys. J. 1994, 23, 197-205.

10. Potanin A.A., Verkhusha V.V., Vrzheshch P.V., and Muller V.M. Theory of adhesion interaction of biological cells in liquid flow: influence of cell deformation on coagulation. Colloid J. 1994, 56, 365-369.

9. Potanin A.A., Verkhusha V.V., Vrzheshch P.V., and Muller V.M. Theory of adhesion interaction of biological cells in liquid flow: undeformed cells. Colloid J. 1994, 56, 356-364.

8. Verkhusha V.V.*, Lebedev E.S., Vrzheshch P.V., and Muller V.M. Experimental investigation of aggregation of platelets and latex immunoconjugates in shear flow. Colloid J. 1994, 56, 269-279. *Corresponding author

7. Verkhusha V.V.*, Staroverov V.M., and Vrzheshch P.V. Model for cell adhesion in the flow of liquid. Biol. Membranes. 1994, 11, 437-450. *Corresponding author

6. Verkhusha V.V.*, Smorodin V.E., and Vrzheshch P.V. Model of bioaerosol adhesion interactions in respiratory tracts. J. Aerosol Sci. 1993, 24, S433-S434. *Corresponding author

5. Potanin A.A., Verkhusha V.V., Vrzheshch P.V. Coagulation of particles in shear flow: applications to biological cells. J. Coll. Interface Sci. 1993, 160, 405-418.

4. Verkhusha V.V., Vrzheshch P.V., Staroverov V.M., and Varfolomeyev S.D. Cell-cell adhesion in shear flow. J. Chem. Biochem. Kinetics. 1992, 2, 135-153.

3. Verkhusha V.V., Vrzheshch P.V., and Varfolomeyev S.D. Mathematical approaches for kinetics of blood platelet aggregation. Proc. USSR Acad. Med. Sci. 1991, 10, 20-28.

2. Vrzheshch P.V., Verkhusha V.V., and Varfolomeyev S.D. Rate equation for platelets aggregation. Biophysics (Mosc). 1990, 35, 637-641.

1. Vrzheshch P.V., Verkhusha V.V., and Varfolomeyev S.D. Kinetic analysis of blood platelets aggregation. Proc. USSR Acad. Sci. 1990, 313, 726-729.