Hierarchical Modelling of Species Communities (HMSC) is a model-based approach for analyzing community ecological data (Ovaskainen et a. 2017a). The obligatory data for HMSC-analyses includes a matrix of species occurrences or abundances and a matrix of environmental covariates. Optional data include information about species traits and phylogenetic relationships, and information about the spatiotemporal context of the sampling design. HMSC partitions variation in species occurrences to components that relate to environmental filtering, species interactions, and random processes. HMSC yields inference both at species and community levels. It can be used to generate simulated communities under given environmental conditions, and thus its predictions can be compared to independent validation data, and it can be used for scenario simulations. The software can be downloaded either as a Matlab or R package. For the technical description of the software, see the manual.




16th June 2017. HMSC R package updated (conditional predictions, community similarity). The related example scripts were updated to include items that were missing before (specific outputs for the fungi, butterflies and bryophytes case studies). Manual updated accordingly.

16th June 2017. A beta version of HMSC Matlab 2.1 is now available. This version implements extensions that are described in Ovaskainen et al. (2017b) and Tikhonov et al. (2017). These extensions are currently not available in HMSC R, but we plan to implement them there later.



Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. 2017a. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters 20, 561-576

Ovaskainen, O., Tikhonov, G., Dunson, D., Grøtan, V., Engen, S., Sæther, B.-E. and Abrego, N. 2017b. How are species interactions structured in species rich communities? A new method for analysing time-series data. Proceedings of the Royal Society B: Biological Sciences, 284, 20170768.

Tikhonov, G., Abrego, N., Dunson, D. and Ovaskainen, O. 2017. Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods in Ecology and Evolution 8, 443-452.