The file sizes range from 45 MB (FIRE 2-3) to 655 MB (FIRE 4 & 4A). The number of CMPs varies from 1,537 to 22,699.
Typically, each stack represents a different subdivision of a line – FIRE 2-1 is separate from FIRE 2-2 and so on. The only exception is FIRE 4 & 4A. They form a continuous line but were surveyed in different directions, the former from south to north (Ranua to Sirkka) and the latter from north to south (Näätämö to Sirkka). In OpenFIRE, FIRE 4 and 4A have been joined to avoid possible confusion.
The pre-migration steps are described separately under NMO and DMO stacks. All stacks preserve their original sample rate at 2 milliseconds (15,000 or 8,001 samples per trace).
The migration was applied using the conventional Stolt method. The following RMS velocity table is an average obtained from previous refraction seismic studies in Southern Finland and was applied to the profiles 1, 2, 2A, 3, and 3A:
time [s] | rms velocity [m/s] |
0.000 | 5830 |
0.700 | 5943 |
1.500 | 6008 |
2.528 | 6075 |
3.445 | 6127 |
4.693 | 6188 |
6.393 | 6262 |
8.709 | 6358 |
11.865 | 6502 |
16.164 | 6756 |
22.021 | 7166 |
27.028 | 7455 |
30.000 | 7600 |
The following rms velocities from the POLAR refraction profile were used for FIRE 4, 4A and 4B:
time [s] | rms velocity [m/s] |
0.000 | 5843 |
0.400 | 5985 |
1.100 | 6097 |
1.900 | 6165 |
2.500 | 6197 |
3.600 | 6215 |
4.300 | 6237 |
6.000 | 6299 |
8.000 | 6366 |
10.000 | 6446 |
12.000 | 6545 |
14.200 | 6708 |
22.021 | 7236 |
27.028 | 7455 |
30.000 | 7600 |
In addition, for the PDF books, a Stolt stretch factor of 0.95 has been applied in the migration stage.
Since the migration step adds energy to the top part of stacks where reflectors are abundant and fades out the deep crust, a post-migration scaling step was performed to restore the original amplitude decay. The program used for this (su_balance_fire) is included in the OpenFIRE tools Github repository.
Depth conversion was applied using the following table of interval velocities, obtained from the table above using the Dix equation:
time [s] | velocity [m/s] |
0.000 | 5870 |
0.700 | 6022 |
1.500 | 6125 |
2.528 | 6233 |
3.445 | 6312 |
4.693 | 6406 |
6.393 | 6528 |
8.709 | 6721 |
11.865 | 7090 |
16.164 | 7770 |
22.021 | 8521 |
26.971 | 8667 |
30.000 | 8700 |
Similarly for FIRE 4, 4A and 4B, the velocities are:
time [s] | velocity [m/s] |
0.000 | 5911 |
0.400 | 6108 |
1.100 | 6227 |
2.200 | 6306 |
2.900 | 6225 |
3.600 | 6321 |
4.300 | 6413 |
6.000 | 6495 |
8.000 | 6613 |
10.000 | 6944 |
12.000 | 7096 |
14.200 | 8246 |
26.971 | 8667 |
30.000 | 8700 |
The NMO sections were resampled to 12.5 meters (6,401 depth samples per trace) and the DMO sections to 6.25 meters (6,401 samples per trace). The depth extent is 80 kilometers for the NMO sections and 40 kilometers for the DMO sections. The depth sampling interval is not assigned in any header since it is not mentioned in the SEG-Y rev 1 standard.
Finnish Reflection Experiment is a 2-D crooked-line seismic survey covering around 2,100 km of survey lines. The recording geometry is split-spread (asymmetric at the end of lines) with 362 active channels separated by a nominal group interval of 50 meters. This results in a nominal fold of ~90 for the entire survey.
The CMP interval in the stacked data is 25 meters.
FIRE 1, 2 and 2A form a continuous line. The CMPs of FIRE 1 and FIRE 2 match as indicated in the table below.
CMP (line 1-3) | CMP (line 2-1) |
19380 | 182 |
20009 | 361 |
20187 | 539 |
The CMP 1381 in line 2A matches with the CMP 8655 in line 2-3.
The naming of files follows the general pattern
Fire_(line)_(subdivision)_[nmo/dmo]_mig[_depth].sgy
The 3200-byte textual header contains general information of the data and is organized as follows:
C1 FIRE Finnish Reflection Experiment 2001-2003 *
C2 Client : FIRE consortium: University of Helsinki, University of Oulu*
C3 and Geological Survey of Finland *
C4 Contractor: Spetsgeofyzika, Russia *
C5 LINE [NUMBER] [REGION] ; acquisition: [TIME INTERVAL] *
C6 *
C7 MIGRATED [& DEPTH CONVERTED] [NMO/DMO] STACK. *
C8 *
C9 Band-pass filtering: 6, 12-80, 125 Hz + notch filter 50 Hz *
C10 Geometrical spreading correction: velocity-dependent sphdiv *
C11 Deconvolution: operator length 160 ms, white noise 0.1 per cent, *
C12 evaluation windows remain constant *
C13 Whole-trace equalisation at the University of Helsinki. *
C14 Variable-velocity Stolt migration at the University of Helsinki. *
C15 [Time-to-depth conversion at the University of Helsinki.] *
C16
C17 CDP range: [RANGE] *
C18 Number of samples: [NO OF SAMPLES] Sampling interval: [INTERVAL] *
C19 Horizontal extent: [KILOMETERS] *
C20 Vertical extent: [KILOMETERS OR SECONDS] *
C21 *
C22 NOTE! There is a gap of 196 CDPs between FIRE 3-1 and 3-2 due to *
C23 the city of Joensuu. *
C24 *
... [OTHER MISCELLANEOUS NOTES, CUT TO SAVE SPACE]
C40 END TEXTUAL HEADER *
The 400-byte binary header has been set, at least for the following values:
In the trace headers, the following values should at least be set:
The trace sequence number within line (bytes 1–4) continues to increase across FIRE 1 and 2. Where the stacked sections overlap, the numbers are shared. Similarly has been done for lines 4 & 4B and 3-1 & 3-2.
The header variable at bytes 1–4 should be primarily used for cutting and joining lines. As an example, if the user wants to combine FIRE 4 & 4B into a single profile, they both should be split at trace sequence number 9912 (corresponding to CMP 9919 and 212, respectively).
The coordinate system of the data is the Finland Uniform Coordinate System (EPSG:2393). As a convention, the "X" (bytes 73–76 or 81–84) in trace headers is the northing and "Y" (bytes 77–80 or 85–88) is the easting.