Research

The group's research has focused on three different areas; Complex Network Dynamics, Network Oscillations in Cognition and Brain Disorder Mechanisms & Biomarker Search.

Follow us:
BlueSky @satupalva.bsky.social
X @PalvaLab
Complex Network Dynamics

We use data-driven analysis to resolve oscillatory network dynamics and their underlying mechanisms. In particular, our goal is to uncover complex systems-level dynamics governing the emergence of oscillations and their network interactions using computational approaches focusing on brain network analysis in the context of brain oscillations and brain criticality frameworks (Palva & Palva 2012, Palva & Palva 2017, Palva & Palva 2018).  Even in healthy adults, there is large variability in the oscillatory synchronization levels. Our recent study shows how this variability could be explained in the brain criticality framework (Fusca et al., 2023).  Our research research has for instance also resolved new network-level coupling mechanisms in the human brain including synchronization of high-frequency oscillations  (Arnulfo et al., 2020) and cross-frequency network interactions (Siebenhühner et al., 2020) that may serve as unique computational functions in brain hierarchical computations.  We further have investigated how network oscillations are influenced by genetics (Simola et al., 2017) and neurotransmitter distribution (Siebenhühner et al., 2024).

  • Arnulfo, G., Wang, S.H., Toselli, B., Myrov, V., Hirvonen, J., Fato, M., Nobili, L., Cardinale, F., Rubino, A., Zhigalov, A., Palva, S., Palva, J.M. (2020) Long-range phase synchronization of high-frequency oscillations in human cortex. Nature Communications. 11:5363. doi: 10.1038/s41467-020-18975-8 
  • Fuscà M, Siebenhühner F, Wang SH, Myrov V, Arnulfo G, Nobili L, Palva JM, Palva S (2023) Brain criticality predicts individual levels of inter-areal synchronization in human electrophysiological data. Nat Commun. 2023;14(1):4736. doi: 10.1038/s41467-023-40056-
  • Palva JM, Palva S (2012) Discovering oscillatory interaction networks with MEG/EEG: challenges and breakthroughs Trends in Cognitive Sciences 16: 219-230. doi: 10.1016/j.tics.2012.02.004
  • Palva JM, Palva S (2017) Functional integration across oscillatory frequencies by cross-frequency phase synchronization. European Journal of Neuroscience. Nov 2. doi: 10.1111/ejn.13767. 
  • Palva S, Palva JM (2018) Roles of brain criticality and multi-scale oscillations in temporal predictions for sensorimotor processing. Trends Neurosci. 41 (10): 729-743, doi: 10.1016/j.tins.2018.08.008.
  • Siebenhuhner F, Wang SH, Arnulfo G, Lampinen A, Nobili L, Palva JM, Palva S (2020) Resting-state       cross-frequency coupling networks in human electrophysiological recordings Plos Biology 18(5): e3000685. doi: 10.1371/journal.pbio.3000685
  • Siebenhuehner F, Palva JM, Palva S (2024) Node centrality in MEG resting-state networks covaries with neurotransmitter receptor and transporter density. bioRxiv, 2024.01. 11.575176. In press iScience.
  • Simola J, Siebenhühner  F, Kantojärvi K, Paunio T,  Palva JM, Brattico E & Palva S (2021) Critical synchronization dynamics of human brain oscillations is influenced by COMT and BDNF genetic polymorphisms. iScience. 2022 Aug 18;25(9):104985. doi: 10.1016/j.isci.2022.104985. eCollection 2022 Sep 16.
Network oscillations in cognition

Oscillations are thought to be fundamental for cognitive functions by providing a temporal clocking mechanism while their interactions reflect routing of information in neuronal circuits. Our research aims to understand computational principles carried out by network oscillations in visual cognition.  We focus on understanding how network oscillations could implement top-down control and representation of sensory information in support of visual working memory (Honkanen et al., 2015) and visual attention (Lobier et al., 2018; Cruz et al ., 2024) and their cross-frequency coupling (Siebenhühner et al., 2016). We  have also demonstrated that individual capacity of visual working memory (Palva et al., 2010; Sattelberger et al., 2024) and visual attention (Rouhinen et al., 2020) is explained by strength of network oscillations. 

  • Cruz G, Melcón M, Sutandi M, Palva JM, Palva S, Thut G (2024) Oscillatory brain activity in the canonical alpha-band conceals distinct mechanisms in attention. Journal of Neuroscience Oct 15:e0918242024. doi: 10.1523/JNEUROSCI.0918-24.2024.
  • Lobier M, Palva JM, Palva S (2018) High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention NeuroImage 23;165:222-237. doi: 10.1016/j.neuroimage.2017.10.044
  • Honkanen R, Wang S, Rouhinen S, Palva JM, Palva S (2015) Gamma oscillations underlie the maintenance of feature specific information and contents of visual working memory Cerebral Cortex 25(10):3788-801. doi: 10.1093/cercor/bhu263. 
  • Siebenhühner F, Wang SH, PalvaJM, Palva S (2016) Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance. eLife Sep 26;5. pii: e13451. doi: 10.7554/eLife.13451.
Brain Disorder Mechanisms & Biomarker search

We investigate whether deviances of network dynamics from the normative range could lead to brain disorder symptoms. Our overarching goal is to develop novel diagnostic biomarkers for brain disorder subtypes and treatment outcome prediction based on multi-modal brain imaging. We have ongoing work on neurodegenerative diseases funded by EU-H2020-SC1-DTH-07-2018, on depression funded by the Wellcome LEAP MPYCH program and Business Finland and Sigrid Juselius foundation.  Accurate treatment outcome prediction would allow personalized treatment selection and lead to increased treatment efficacy.