Research

Mitochondrial dysfunction has shown out to be a common cause of human inherited disease, with amazing clinical variability, from neonatal fatal multisystem disorders to diabetes, neurodegeneration, dysfertility or tumorigenesis of adult age. Mitochondrial disorders show a wide variation in individual disease severity and progression. Up to date, only few therapy options are available to a limited number of patients. 

Our research group focuses in clarifying the molecular basis of mitochondrial disorders, with a special emphasis on neurodegeneration. We search for disease genes in human sample materials, characterize disease phenotypes and set up DNA-based diagnosis, create disease models based on identified gene defects and utilize these models to study molecular
pathogenesis and to test potential treatments.

The specific focus of our group is the disorders involving mitochondrial DNA (mtDNA) maintenance. A plethora of nuclear-encoded proteins are involved in replication, repair and transcription of mtDNA, as well as its copy number regulation. In particular, we clarify the functions of DNA polymerase gamma, the replicative mtDNA polymerase, and its functional
companion Twinkle, the replicative helicase. We and others have shown that both of these proteins are involved in a wide variety of dominantly and recessively inherited neurodegenerative disorders, such as MIRAS (mitochondrial recessive ataxia syndrome), Parkinsonism and childhood/juvenile onset epilepsies.

The ultimate aim of our research group is to generate enough knowledge on the mitochondrial disease mechanisms to be able to create therapy. Due to the variability of mitochondrial disease phenotypes, however, it is unlikely that a single therapy would be beneficial for all kinds of mitochondrial dysfunction.

Our group works in close contact with clinical patient care, through excellent collaboration links to child neurology, neurology and pathology departments of University of Helsinki and to hospitals throughout Finland, as well as through our responsibilities in HUSLab mitochondrial disease diagnosis.

See website for Academy of Finland Centre of Excellence FinMIT - Research on Mitochondria, Metabolism and Disease