A multi-disciplinary team lead by University Researcher Alexandru Tomescu from the University of Helsinki and Prof. Martin Milanič from the University of Primorska (Slovenia) has developed a new method for discovering the evolution of the tumor, using DNA sequencing data from multiple samples of a tumor. This method proved more accurate than the existing methods, both on synthetic data and on data from several types for cancer, such as clear cell renal cell carcinoma, high-grade serous ovarian cancer, breast cancer xenoengraftment and uterine leiomyomas.
This research has been published in the journal Bioinformatics, and is available under an Open Access license:
This computational method is based on a previous theoretical result proving a relation between this bioinformatics problem and a problem on directed graphs, presented at the WG 2017 graph-theory conference (
An example is shown in the figure below: Tumors usually have a tree-like evolution, with new mutations (c1, c2, c3, ...) accumulating on each edge of the tree. DNA sequencing samples (r1, r2, r3, r4) usually mix several leaves (A, B, C, D, E) of the tree, making it hard to discover the actual evolution.