Our research program is focused to make fundamental contributions to the fields of cancer biology, tumor microenvironment and virus-host cell interactions.

Virus- induced oncogenesis

Research on human tumor viruses has been central to development of modern cancer biology and given profound insights into not only cancers associated with infection but also cancer in general. We are using Kaposi’s sarcoma herpesvirus (KSHV), an oncogenic gamma-2 herpesvirus, as a model system to study the virus-host interactions. Kaposi’s sarcoma herpesvirus (KSHV), an oncogenic gamma-2 herpesvirus, is genetically equipped to manipulate and deregulate several cellular signalling pathways. Especially AIDS-associated Kaposi’s sarcoma (KS) is strongly linked to immunosuppression and remains a significant health problem due to persisting HIV epidemic in Africa, and an increase in cases of recurrence even in the HAART-treated AIDS patients. We focus mainly on virus induced alterations of the cell cycle machinery as well as KSHV-induced reprogramming of lymphatic endothelial cells (LECs). Our long-term goal is to identify novel signaling pathways and cellular proteins involved in viral reactivation, which could open new leads that can be pursued for novel intervention and therapeutic strategies against KSHV-associated diseases.

Role of the tumor microenvironment in cancer progression and metastasis

Given our expertise on LEC biology, we have expanded  our research focus to study  the role of lymphatic endothelium in the tumor microenvironment and cancer metastasis. Since many solid cancers, such as melanoma, spread mainly through lymphatics, we are focusing on the LEC-melanoma crosstalk. We are interested in the changes in the tumorigenic properties of the melanoma cells upon contact with the lymphatic endothelium.