Solid Earth Geophysics

Solid Earth Geophysics combines geology with geophysics to study the structure of the Earth’s interior and the physical processes related to its evolution. This is not only crucial for understanding phenomena such as earthquake and volcanic activity related to plate tectonics, but also important for exploration of natural resources, environmental studies and engineering, for example. Below you will find a list of courses available in the Solid Earth Geophysics study track and you can learn more about our research, teaching, and other activities on the Solid Earth Geophysics wiki page.

Previous studies required for this study track:
BSc in geosciences or related field with minor studies in physics

The study track in Solid Earth Geophysics in the MSc degree in Geology and Geophysics comprises 120 cp divided among common courses (55 cp), advanced courses (40-60 cp), and optional courses (5-25 cp). The advanced courses are divided into modules to provide logical course combinations to develop expertise in your areas of interest. Details about the courses offered in this study track are given below. You can also find course descriptions and additional information on our Solid Earth Geophysics wiki page.

Common courses (55 cp)

  Common courses course package 55 cp Compulsory
period II/ every year 3D modelling 5 cp Compulsory
period I/ every year Isotope geochemistry 5 cp Compulsory
periods III-IV/ every year

Conducting scientific research

10 cp Compulsory
1. to 2. year Thesis 30 co Compulsory
summer between 1. and 2. yr Internship 5 cp Compulsory

Advanced courses (40-60 cp)

  General geophysics course package 15-20 cp Compulsory
period I/ every year Introduction to Solid Earth Geophysics 5 cp Optional*
period II/ 2017, 2018, 2021 Applied Geophysics 5 cp Compulsory
period I/ every year Field course of solid Earth geophysics 5 cp Compulsory
periods I-II/ every year Lithospheric structure and dynamics 5 cp Compulsory
  * Required if no equivalent course exists in previous studies
  Lithospheric properties course package 15 cp Optional
period IV/ 2018, 2019, 2021 Borehole geophysics 5 cp Optional
periods III-IV/ every year Geothermics 5 cp Optional
periods III-IV/ next time 2020 Physical properties of rocks 5 cp Optional
periods I-II/ 2017, 2019, 2021 Paleomagnetism 5 cp Optional
  Applied and environmental geophysics course package 15 cp Optional
intensive week in January + period III/ 2019, 2021 Ground-penetrating radar 5 cp Compulsory
period I/ 2018, 2020 Environmental magnetism 5 cp Compulsory
period I/ 2018, 2020 Quantitative hydrogeology and flow modeling 5 cp Compulsory
  Earth dynamics course package 15 cp Optional
period I/ every year Geodynamics 5 cp Compulsory
intensive week in January + period III/ 2018, 2020 Introduction to geodynamic modelling 5 cp Compulsory
period IV/ 2018, 2020 Mantle dynamics 5 cp Compulsory
  Geodesy course package 15 cp Optional
periods III-IV/ 2019, 2021 Introduction to Geodesy 5 cp Compulsory
periods I-II/ 2018, 2020 Physical geodesy 5 cp Optional
periods I-II/ 2018, 2020 Satellite positioning 5 cp Optional
periods I-II/ 2017, 2019 Space geodesy 5 cp Optional
  Planetary geophysics course package 10 cp Optional
periods III-IV/ 2018, 2020 Planetary geophysics 5 cp Compulsory
periods III-IV/ 2019, 2021 Origin and chemistry of Solar System 5 cp Optional
periods I-II/ 2017, 2018 Planetary exploration 5 cp Optional
  Seismology course package 15 cp Optional
period II/ 2018, 2020 Earthquake seismology 5 cp Compulsory
period II/ every year Theory of Seismic waves 5 cp Compulsory
period III/ 2018, 2020 Seismic structural studies 5 cp Compulsory
  Advanced studies in geophysics course package 5-20 cp Optional
TBA Advanced applied geophysics 5-10 cp Optional
TBA Advanced global geophysics 5-10 cp Optional
  Scientific computing course package 5-20 cp Optional
period III/ every year Basics of Monte-Carlo simulations 5 cp Optional
TBA Inversion of geophysical data 5 cp Optional
periods I-II/ every year Inverse problems 10 cp Optional
periods III-IV/ 2019, 2021 Scientific computing III 10 cp Optional
period III/ 2018, 2020 Solid state continuum mechanics I 5 cp Optional
periods I-II/ every year Statistical methods 5 cp Optional
periods III-IV/ 2019, 2021 Time series analysis in geosciences 5 cp Optional
periods III-IV/ 2018, 2020 Tools for high performance computing 5 cp Optional

Optional courses (5-25 cp)

Courses in addition to those above as required to reach 120 cp.

Below are some examples of the recent thesis titles related to Solid Earth Geophysics. You may also want to check out the list of all Geology theses at the link on the left, where you can find other theses in Geophysics.

  1. Aalto, Aleksi, 2017. Development of a Web GIS Application and Data Management Practices for Integrating Geological and Geophysical Data.
  2. Tuomi, Hilkka, 2016. Seismic forward modelling constraints for seismic ore exploration at the Kylylahti Cu-Co-Zn-Ni-Ag-Au sulfide deposit.
  3. Blomqvist, Niclas, 2016. Global variations in erosion of young orogens: Swath profile comparison of climatic, erosional and topographic metrics to long-term exhumation rates.
  4. Lammi, Hannu, 2015. Numerical Modelling of Mid-Crustal Flow Applied to Svecofennian Orogeny
  1. Heat and mass transfer in coaxial drill hole casings for geothermal energy applications (Kukkonen)
  2. Inverse solution of conductive heat transfer in 3D anisotropic medium (Kukkonen)
  3. Hydrothermally altered mineralized systems: Seismic reflection properties of rocks (Kukkonen, Koivisto)
  4. Cosmogenic isotopes in age dating of glacial bedrock morphology (Kukkonen, Whipp, Kulti)
  5. Processing and analysis of seismic reflection data in exploration and mining camps (Koivisto, Kukkonen)
  6. Thermal properties of meteorites (Kukkonen, Kohout)
  7. Inversion of subsurface drill hole temperature profiles for ground surface temperature history (Kukkonen)
  8. Induced seismicity in enhanced geothermal systems (Kukkonen, Korja)
  9. 3D fracture analysis of a postglacial fault (Kukkonen)
  10. Seismic deformation of till layers over a postgalcial fault using anisotropy of magnetic susceptibility (Kukkonen, Salminen)
  11. Radiogenic heat production model of the lithosphere based on geochemistry and seismic data (Kukkonen, Veikkolainen)
  12. Geoneutrinos and radiogenic heat production of the Earth (Kukkonen, Veikkolainen)
  13. Potassium in the earth’s core? (Kukkonen)
  14. Heat producing elements in iron and stony iron meteorites (Kukkonen)
  15. Magnetic minerals in the upper mantle (Kukkonen)
  16. Fracture orientation analysis of the Outokumpu deep drill hole with acoustic televiewer data (Kukkonen)
  17. Low temperature thermochronology Fission track & He-U-Th-methods (Whipp, Kukkonen)
  18. Modeling of thermochronological data (Whipp, Kukkonen)
  19. Water in the mantle: geophysical implications (Kukkonen)
  20. Data processing and interpretation of seismic data from Siilinjärvi phosphate mine for mine planning (Koivisto)
  21. Study of shock darkening in selected chondritic meteorites (Kohout)
  22. Changes in reflectance spectra of olivine and pyroxene due to space weathering (Kohout)
  23. Asteroid exploration concepts using small satellites (Kohout)
  24. Plate tectonics - Rapakivi related Mesoproterozoic mafic dyke swarms in Baltica: 1.5 Ga Ragunda, Sweden (Salminen, Bjarne Almqvist (Uppsala U), Sten-Åke Elming (Luleå U))
  25. Plate tectonics - Rapakivi related Mesoproterozoic mafic dyke swarms in Baltica: 1.5 Ga (?) Kopparnäs, Finland (Salminen, Satu Mertanen (GTK), Fredrik Karell (GTK))
  26. Plate tectonics - Rapakivi related Mesoproterozoic mafic dyke swarms in Baltica: 1.58 Ga Nordingrå, Sweden (Salminen, Bjarne Almqvist (Uppsala U), Sten-Åke Elming (Luleå U))
  27. Plate tectonics – Svecofennian gabbros and amalgamation of Baltica (Salminen, Satu Mertanen (GTK), Ulf Söderlund (Lund U))
  28. Plate tectonics – Mesoproterozoic mafic magmatism on Congo Craton/ Congo in supercontinent Nuna, Selected 1.5 Ga, 1.37 Ga, and 1.1 Ga intrusions (Salminen, Dave Evans (Yale U), Richard Hanson (Texas Christian U))
  29. Plate tectonics - Baltica´s journey towards Neoproterozoic supercontinent Rodinia, Ca. 1.07 Kautokeino mafic dykes, Norway (Salminen, Evgeniy Kulakov (Oslo U), Trond Torsvik (Oslo U), NGU)
  30. Ediacaran nightmare – Iranian contribution, Ediacaran mafic dykes and red beds (Salminen, Iranian colleagues, Anu Kaakinen (U of Helsinki))
  31. Magnetotratigraphy – Magnetotratigraphy of the K-Pg marine sediments of Namibe basin, Angola (Salminen, Louis Jacobs (Southern Methodist U of Texas), Octávio Mateus (New U of Lisbon))
  32. Environmental magnetism - K-Pg marine carbonates of Paríba basin, NE Brazil (Salminen, Ricardo Trindade (U of São Paulo, Brazil), Alcides Sial (U of Pernambuco, Recife, Brazil))
  33. Physical effects of meteorite impacts on rocks, Impact craters in Finland (Salminen, Lauri Pesonen (U of Helsinki), Jüri Plade (U of Tarto))
  34. Radiogenic heat production maps of Sweden (Veikkolainen)
  35. Geophysical properties of the Pyhäsalmi area (Veikkolainen)
  36. Combining infrasound and seismic data in seismic event detection (Seismology)
  37. Seismic hazard in the Helsinki region (Seismology)
  38. Tomogrphic velocity model of the Helsinki region (Seismology)
  39. Accelometer and seismometer data in the Helsinki region (Seismology)
  40. Automatic dection of seismic events in urban areas (Seismology)
  41. Open quake and seismic hazard in Finland (Seismology)
  42. Big data in seismology (Seismology)
  43. Structural studies along deep seismic line (Seismology)
  44. Refocusing and time reversal (Hillers, Seismology)
  45. Fault zone wave detection along the North Anatolian fault (Hillers, Seismology)
  46. Crustal and fault zone monitoring using noise correlations (Hillers, Seismology)
  47. Automatic determination of earthquake  depth /source parameters(moment, corner frequency, stress drop,...) / focal mechanism (Uski, Seismology)
  48. Attenuation (coda Q etc) (Uski, Seismology)
  49. Automatic identification/classification of frost events (detections caused by 
    Frost) (Uski, Seismology)
  50. Influence of seismic station locations on data acquired and threshold event size, Kovoula, Finland (Vuorinen, Oinonen, Seismology)
  51. Volcanism and heat transfer in the Andes: Influences of arc volcanoes on crustal strength (Whipp)
  52. Ablative subduction in the Andes: An alternative mechanism for removal of mantle lithosphere? (Whipp)
  53. Quantifying rates of bedrock landsliding in mountainous regions and their implications for landscape erosion (Whipp)
  54. Effects of orographic precipitation on mountain evolution in 3D (Whipp)
  55. Where does landslide-derived sediment go and how long does it take? (Whipp)