Regenerative Pharmacology
Regenerative Pharmacology group has its focus on novel drug targets and experimental drugs to reveal the basis of disease modifying therapies of illnesses with unmet medical need, especially degenerative heart and - brain diseases (including drug and alcohol addiction). We explore possibilities of tissue repair by inducing proliferation and differentiation of adult stem cells in the heart and in the brain by chemical and/or protein drugs. Dissolution and imaging of aberrant proteins in the brain relevant to Parkinson’s disease as well as levodopa-induced dyskinesias are in focus. Therapeutic drug targets include transcription factors, protein kinase C (PKC), prolyl oligopeptidase and cell surface receptors such as nicotinic and histaminergic receptors and receptors involved in drug addiction. Unit's principal investigators are listed below.
Raimo Tuominen, Unit Leader

The aim of the research is to find basis for disease modifying drug therapies of neurodegenerative diseases, i.e. Alzheimer’s disease (AD) and Parkinson’s disease (PD). In AD we concentrate on experimental drugs that modify activity of protein kinase C (PKC). Our focus is on PKC partial agonists that would reduce formation of aberrant amyloid beta fragments. In PD we explore possibilities to induce adult neural stems cells in sub ventricular zone and differentiate them to mature neurons in striatum. We also study effects and mechanisms of action of neurotrophic factors in experimental PD. In this respect novel neurotrophic factors CDNF and MANF are promising disease modifying therapies with unique mechanism of action.

Mikko Airavaara

We are interested in brain repair mechanisms after injury and in neurodegeneration, aiming to find new ways to restore and regenerate the damaged brain. We are curious about endoplasmic reticulum homeostasis in regulating the function of a brain cell in health and disease. We aim to understand myeloid cell and neuron interactions and study the mechanisms of protein aggregation (alpha-synuclein) and spreading. We have developed new unbiased ways for high-content image analysis to quantify numbers of neurons, Lewy bodies and neurites. We work with cell cultures, disease models, and CRISPR-based genome editing to develop quantitative tools to measure pharmacological processes in cell culture and in vivo.
We have a passion for excellent level research and high-quality international training. With international collaborators, we can push the frontiers of science. Our mission is to provide the highest quality science-based teaching and training.

Arturo Garcia-Horsman

Imaging. Development of new tracers for neuroinflammation, disease bio-marking; characterisation of models of neurodegenerative disease in rodents for the validation of new therapeutic approaches against the disease. Developing new imaging systems for drug absorption.

Prolyloligopeptidase. Implication of prolyl specific peptidases role as drug targets, studying their biochemistry, molecular biology and cell biology, their physiological relevance on the molecular mechanisms of neuroinflammation, neurodegeneration and clinical cases of multiple sclerosis and hepatic encephalopathy.

Bogac Kaynak
Timo Myöhänen

Our research is focused on understanding the mechanisms of how prolyl oligopeptidase, PREP, increases the accumulation of aggregation-prone proteins in neurodegenerative diseases, and studying if small-molecule PREP inhibitors are effective in preventing the protein accumulation or even dissolve the surplus of toxic protein aggregates from cells. Currently, a lot of our research efforts are also in studying the role and mechanisms of PREP and its inhibition on autophagic clearance of protein aggregates, and to characterize and develop novel PREP inhibitor molecules.

Petteri Piepponen

Doc. Piepponen is an expert in neurochemical analysis. He has set up and maintains the HPLC systems for the analysis of monoamines and amino acid neurotransmitters from large array of matrices, including cerebral tissue samples and microdialysates. These systems are widely used also in cooperation with several other units and industry. Doc. Piepponen is also an expert in ethical issues of experimental animals and statistical testing. His main research interest is the role dopaminergic neurotransmission in drug and alcohol addiction.

Tomi Rantamäki

Laboratory of Neurotherapeutics, led by Associate Professor Tomi Rantamäki, investigates the neurobiological mechanisms underlying the neurotrophic and neuroplastic effects produced by various compounds, including anesthetics and psychoplastogens. Our special interest is the connection of these pharmacotherapeutic interventions and physiological processes, such as sleep. We combine standard in vivo and wet lab techniques with electroencephalogram (EEG) and omics screenings. The ultimate goal is to translate our findings into clinic through collaborators.

Heikki Ruskoaho

The research group studies novel interventions for preventing myocardial remodeling or to activate regenerative pathways. In particular, transcription factors are the main focus as potential targets for new pharmaceuticals. The group also investigates signaling mechanisms involved in myocardial remodeling caused by myocardial infarction and hypertension and the role of natriuretic peptides (ANP and BNP) in heart failure. In addition, a new area of interest is research on the heart regeneration by means of induction of the differentiation of cardiac stem cells into cardiomyocytes, proliferation of cardiomyocytes and direct reprogramming of fibroblasts into cardiomyocytes. Finally, with collaborators the group examines novel drug delivery approaches to target cardioprotective compounds into the border zone of infarcted myocardium.

Outi Salminen

Outi Salminen leads a research group which is focused on levodopa-induced dyskinesia in Parkinson’s Disease (PD). Levodopa is a cornerstone in PD medication, but its long-term use can lead to severe and bothersome side-effects: dyskinesia, which are abnormal involuntary movements.  Our group is currently broadening its research focus also to the non-motor symptoms of PD. In addition, Outi Salminen group is doing basic research on brain nicotinic and histamine receptors and studying their role in PD and addiction.

Virpi Talman

The regenerative cardiac pharmacology research group led by Virpi Talman investigates molecular mechanisms of heart diseases and cardiac regeneration. By elucidating these mechanisms, we aim to identify new potential drug targets for further drug discovery projects, in which we screen and characterise new compounds designed and synthesized by our collaborators. Our current targets of interest include protein kinases, transcription factors and metabolic pathways. We utilise modern techniques such as human pluripotent stem cell-derived cardiovascular cells and high content analysis.