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SUMMARY

DNA damage response (DDR) involves dramatic tran-
scriptional alterations, the mechanisms of which
remain ill defined. Here, we show that following geno-
toxic stress, the RNA-binding motif protein 7 (RBM7)
stimulates RNApolymerase II (Pol II) transcription and
promotes cell viability by activating the positive tran-
scription elongation factor b (P-TEFb) via its release
from the inhibitory 7SK small nuclear ribonucleopro-
tein (7SK snRNP). This is mediated by activation of
p38MAPK, which triggers enhanced binding of RBM7
with core subunits of 7SK snRNP. In turn, P-TEFb re-
locates to chromatin to induce transcription of short
units, including key DDR genes and multiple classes
of non-coding RNAs. Critically, interfering with the
axis of RBM7 and P-TEFb provokes cellular hyper-
sensitivity to DNA-damage-inducing agents due to
activation of apoptosis. Ourwork uncovers the impor-
tance of stress-dependent stimulation of Pol II pause
release, which enables a pro-survival transcriptional
response that is crucial for cell fate upon genotoxic
insult.

INTRODUCTION

The cellular DNA damage response (DDR) has evolved to detect

and repair lesions that are generated continuously by external

and internal DNA-damaging agents (Hoeijmakers, 2009). In par-

allel, activation of the DDR halts progression of the cell cycle to

provide time for repair, the outcome of which determines

whether cells will re-enter the cell cycle and continue with their
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physiological program, enter into senescence, or die by

apoptosis. A defective DDR can lead to genomic instability un-

derlying many diseases, including hematological disorders and

cancer (Jackson and Bartek, 2009). Importantly, it is widely

accepted that cells need to shut down RNA polymerase II

(Pol II) transcription in response to UV-induced bulky DNA le-

sions and other types of DNA damage, which can facilitate repair

and limit the production of abnormal transcripts (Giono et al.,

2016). While transcription can be inhibited transiently at the initi-

ation and elongation stages (Awwad et al., 2017; Rockx et al.,

2000; Williamson et al., 2017) or irreversibly through degradation

of stalled Pol II (Wilson et al., 2013), it is eventually restored once

the damage is corrected. However, the significance of mounting

transcriptional activation following genotoxic stress remains

poorly understood.

Transition of Pol II from promoter-proximal pausing to produc-

tive elongation represents a critical regulatory step in metazoan

gene expression (Zhou et al., 2012). At most active genes, Pol II

transcribes 20–100 nt from the transcription start site (TSS)

before its elongation is paused by themultisubunit negative tran-

scription elongation factors (N-TEFs), consisting of negative

elongation factor (NELF) and DRB-sensitivity inducing factor

(DSIF). The release of paused Pol II genome-wide is stimulated

by positive transcription elongation factor b (P-TEFb), which is

composed of the catalytic CDK9 kinase and a regulatory

CycT1 or CycT2 subunit (Gressel et al., 2017; Zhou et al.,

2012). Upon its recruitment or activation at target gene pro-

moters or enhancers, P-TEFb phosphorylates serine 2 residues

(Ser2-P) within the C-terminal domain (CTD) Y1S2P3T4S5P6S7

heptapeptide repeats of the largest Pol II subunit, RPB1, as

well as NELF-E and the SPT5 subunit of DSIF, leading to produc-

tive Pol II elongation (Bacon andD’Orso, 2018; Zhou et al., 2012).

In addition, clearance of Pol II from the pause sites enables new

transcriptional initiation, augmenting the production of RNA

(Gressel et al., 2017).
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Considering that P-TEFb is crucial for prompt expression of

stimulus-induced genes (Liu et al., 2015), we reasoned that it

might feature prominently in activating Pol II transcription

following DNA damage. Importantly, a major fraction of P-TEFb

resides within 7SK small nuclear ribonucleoprotein (7SK snRNP),

in which coordinated actions of the scaffolding 7SK small nuclear

RNA (7SK) and three RNA-binding proteins (RBPs) inhibit the ki-

nase.While the7SKg-methylphosphatecappingenzymeMePCE

and LARP7 stabilize 7SK to form the core of 7SK snRNP, HEXIM1

subsequently interacts with 7SK of the core to bind and inhibit

P-TEFb (Michels and Bensaude, 2018; Quaresma et al., 2016).

Of note, activation of P-TEFb via its release from 7SK snRNP,

as exemplified by the RNA binding HIV-1 transcriptional transac-

tivator Tat (Ott et al., 2011), has been identified as a rate-limiting

event that stimulates Pol II pause release at specific genes (Quar-

esma et al., 2016). Given that cellular RBPs are emerging as

important effectors in the DDR (Dutertre et al., 2014) and tran-

scription (Quaresma et al., 2016; Skalska et al., 2017), we

envisioned that a protein from this class could facilitate geno-

toxic-stress-induced Pol II transcription through 7SK snRNP.

In this study, we focused our efforts on the ubiquitously ex-

pressed RNA-binding motif protein 7 (RBM7), which promotes

survival of cells following DNA damage generated by UV or its

mimicking genotoxic and carcinogenic chemical 4-nitroquino-

line 1-oxide (4-NQO) (Blasius et al., 2014). RBM7 binds the

DExH/D box RNA helicase MTR4 via the bridging zinc-knuckle

protein ZCCHC8, forming the nuclear exosome targeting com-

plex (NEXT) (Falk et al., 2016; Lubas et al., 2011). Through the

RNA-binding capacity of RBM7, NEXT promotes degradation

of multiple RNA classes, including upstream antisense RNA

(uaRNA) and enhancer-derived RNA (eRNA) transcripts, as well

as 30 end extended forms of snRNA, small nucleolar RNA

(snoRNA), and histone gene transcripts (Andersen et al., 2013;

Hallais et al., 2013; Lubas et al., 2011). Furthermore, NEXT

targets pre-mRNAs for decay and/or processing of intron-

embedded snoRNAs and microRNAs (miRNAs) (Lubas et al.,

2015). Finally, NEXT associates with the cap-binding protein

complex and functions in connecting transcription termination

with exosomal degradation (Andersen et al., 2013; Hallais

et al., 2013). Although a linkage between RBM7 and DDR has

been reported (Blasius et al., 2014), it remains unclear how

RBM7 exerts its pro-survival function. Here, we uncovered an

unexpected interplay between RBM7 and 7SK snRNP in the

wake of DNA damage, shining a spotlight on the central role of

P-TEFb kinase in shaping a transcriptional response that is

crucial for viability of genotoxic-stressed cells.

RESULTS

iCLIP Reveals a Genotoxic-Stress-Enhanced Interaction
of RBM7 with 7SK
We postulated that defining the RNA interactome of RBM7 under

unchallenged and DNA-damage conditions should disclose

insights into its critical function in genotoxic-stressed cells.

Thus, we performed an individual-nucleotide-resolution UV

crosslinking and immunoprecipitation (iCLIP) assay in human

HEK293 Flp-In T-Rex (HEK293) cells that expressed 3XFLAG-

epitope-tagged RBM7 (F-RBM7). Because UV irradiation yields
RNA-protein crosslinks immediately and thus prior toDDRactiva-

tion, we instead employed its mimetic, 4-NQO. Notably, 4-NQO

metabolite 4-hydroxyaminoquinolone 1-oxide forms bulky DNA

adducts on purines, which are removed by nucleotide excision

repair (NER) (Ikenaga et al., 1977). Consistent with the previous

report (Lubas et al., 2015), RBM7 bound directly a diverse set

of RNAs, including genic, intergenic, and non-coding RNAs

(ncRNAs) (Figures 1A, S1A, and S1B; Table S1A). We ranked

these RNAs by the change in binding following 4-NQO exposure,

which showed increased RBM7 binding to snRNAs, including

7SK, spliceosomal snRNAs, and other ncRNAs, and decreased

RBM7 binding to specific pre-mRNAs (Tables S1B and S1C).

As expected, 4-NQO exposure increased g-H2AX foci formation,

confirming activation of the DDR (Figure S1C). Given the pivotal

role of 7SK snRNP in regulating Pol II pause release (Quaresma

et al., 2016), we investigated the potential connection between

RBM7 and 7SK in controlling Pol II transcription following geno-

toxic stress.

We next plotted the RBM7 iCLIP reads on a secondary struc-

ture model of 7SK. This revealed that RBM7 binds selectively

stem-loop 3 (SL3) of 7SK (Figure 1B), thereby placing it between

MePCE/HEXIM1 and LARP7 that bind SL1 and SL4, respectively

(Quaresma et al., 2016). A quantitative RNA immunoprecipitation

(RIP-qPCR) assays proved the iCLIP result to be specific, since

substituting the conserved Lys60, Phe62, and Phe64 residues of

the ribonucleoprotein 1 (RNP1) motif within the RNA recognition

motif (RRM) of RBM7 to alanines (mRNP1) abrogated the inter-

action (Figure 1C). Furthermore, while the interaction of RBM7

with 7SK increased at 30 min of 4-NQO treatment, it decreased

at 2 h to �50% of the interaction in unchallenged cells (Fig-

ure 1D). Paralleling this dynamic, the interaction of F-RBM7

with the core 7SK snRNP subunit MePCE peaked at 30 min of

4-NQO exposure as revealed by a co-immunoprecipitation

(coIP) experiment (Figure S1D). Of note, 4-NQO treatment led

to decreased binding of RBM7 with the uaRNA of RBM39, which

is consistent with the DNA-damage-induced release of uaRNAs

from NEXT (Blasius et al., 2014; Tiedje et al., 2015) (Figure S1E).

Together, these results identify RBM7 as a 7SK-interacting pro-

tein, suggesting its role in the cellular response to genotoxic

stress via 7SK snRNP.

Genotoxic Stress Stimulates the Relocation of P-TEFb
from 7SK snRNP to Pol II
To test if RBM7 binds the rest of 7SK snRNP subunits, we per-

formed a coIP analysis in HEK293 cells. This showed the inter-

action of F-RBM7 with endogenous LARP7 and CDK9, but not

HEXIM1 (Figure 2A). We obtained the same result when we

used 3XFLAG-epitope-tagged MTR4 (F-MTR4) as the bait

(Figure S2A), suggesting that all NEXT subunits bind 7SK

snRNP in unchallenged cells. Importantly, 2 h of 4-NQO treat-

ment resulted in the release of endogenous CDK9, HEXIM1,

and RBM7 from 7SK snRNP in HEK293 and HeLa Flp-In

(HeLa) cells, as determined by coIP analysis with 3XFLAG-

epitope-tagged LARP7 (F-LARP7) and glycerol gradient centri-

fugation analysis, respectively (Figures 2B and S2B). Likewise,

exposing HeLa cells to UV and primary human foreskin fibro-

blasts (HFF-1) to 4-NQO released CDK9 from HEXIM1 (Figures

S2C and S2D).
Molecular Cell 74, 254–267, April 18, 2019 255



Figure 1. Genotoxic Stress Induces the Interaction of RBM7 with 7SK

(A) Distribution charts of unique tags derived from the F-RBM7 libraries based on percentages of the total iCLIP reads andmapped to the indicated RNA classes.

Charts on the right show distribution of the indicated types of ncRNA.

(B) F-RBM7 iCLIP reads mapped to 7SK. Positions of the four stem-loops (SL1–4) are shown below the iCLIP reads and on a 7SK secondary structure model.

(C) RIP-qPCR of 7SK in wild-type and mRNP1 F-RBM7 IP from whole-cell extracts (WCEs) of HEK293 cells. RBM7 with RRM (in pink) and the position of RNP1

(white stripe) is shown on top.

(D) RIP-qPCR of 7SK in F-RBM7 IP from WCE of HEK293 cells. Conditions with (red bars; in hours) and without (blue bars) 4-NQO are shown.

Results in (C) and (D) are presented as the mean ± SEM (n = 3). **p < 0.01. See also Figure S1 and Tables S1A–S1C.
To follow the relocation of P-TEFb upon genotoxic stress

further, we examined its interaction with RBM7 and Pol II by

conducting a series of coIP and bimolecular fluorescence

complementation (BiFC) assays. 2 h of 4-NQO treatment

increased the interaction of 3XFLAG-epitope-tagged CDK9

(F-CDK9) with RBM7 (Figure 2C), indicating that the initial

enhanced binding between RBM7 and 7SK snRNP is followed

by the release of RBM7 in a complex with P-TEFb. Notably, inter-

action of the released CDK9 with F-MTR4 decreased following

4-NQO exposure (Figure S2A), implying a remodeling of NEXT

upon genotoxic stress. Importantly, the released F-CDK9 and

F-RBM7 displayed enhanced interaction with the transcription-

ally engaged Ser2-P form of Pol II upon DNA damage (Figures

2C and 2D). Likewise, 4-NQO treatment enhanced the binding

between F-CDK9 and total Pol II (Figure S2E), which is likely

mediated by direct interaction of theCycT1 histidine-rich domain

with the CTD of Pol II (Lu et al., 2018). To extend these findings,

we evaluated whether 4-NQO treatment triggered relocation of

P-TEFb to the CTD in living HeLa cells by conducting a visualiza-

tion of P-TEFb activation (V-PAC) assay (Fujinaga et al., 2015).

Here, BiFC of transiently expressed YC-P-TEFb and YN-CTD

chimera containing the C- and N-terminal regions of yellow fluo-

rescent protein (YFP), respectively, indicates the relocation (Fig-

ure 2E). Corroborating our coIP results, 4-NQO exposure

increased the number of YFP-positive cells to a similar extent

as the known P-TEFb releasing agents SAHA and JQ1 (Bartho-

lomeeusen et al., 2012; Contreras et al., 2009) (Figures 2F and
256 Molecular Cell 74, 254–267, April 18, 2019
S2F). Together, these findings establish that RBM7 binds 7SK

snRNP and that genotoxic stress activates P-TEFb by relocating

it from 7SK snRNP to the CTD of Pol II.

Genotoxic Stress Triggers the Release of P-TEFb from
HEXIM1 via RBM7 and p38MAPK

The observations gathered thus far led us to hypothesize

that following DNA damage, RBM7 activates P-TEFb by pro-

moting its release from the 7SK snRNP. Indeed, the 4-NQO-

induced release of CDK9 from 3XFLAG-epitope-tagged HEXIM1

(F-HEXIM) was abrogated in RBM7 knockdown cells (Figure 3A).

In a complementary approach, ectopic expression of F-RBM7 in

HEK293 cells decreased the interaction of endogenous HEXIM1

with CDK9 and 7SK, but this effect was lost when using the

7SK-binding-deficient mRNP1 F-RBM7 (Figure 3B). It is likely

that overexpressionof F-RBM7alleviated the requirement of gen-

otoxic stress for P-TEFb activation in this system. Because UV

irradiation triggers phosphorylation of RBM7 via the p38MAPK-

MK2 pathway (Blasius et al., 2014; Borisova et al., 2018), we

examined the importance of this signaling cascade for P-TEFb

activation. While 30 min of 4-NQO exposure activated p38MAPK

and induced the release of CDK9 fromHEXIM1, pharmacological

inhibition of p38MAPK with SB203580 (p38i) interfered with the

release (Figure 3C). Importantly, the blockade of p38MAPK dimin-

ished the 4-NQO-enhanced interaction of RBM7 with 7SK (Fig-

ure 3D). Together, these results show the critical role of RBM7

and p38MAPK in genotoxic-stress-induced activation of P-TEFb.



Figure 2. Genotoxic Stress Induces the Relocation of P-TEFb and RBM7 from 7SK snRNP to Pol II

(A and B) CoIP of F-RBM7 (A) and F-LARP7 (B) with 7SK snRNP from WCE of HEK293 cells. Conditions with (+) and without (�) 4-NQO are shown.

(C and D) CoIP of F-CDK9 (C) and F-RBM7 (D) with the indicated proteins from WCE of HEK293 cells. Conditions with (+) and without (�) 4-NQO are shown.

(E) Cartoon depicting the V-PAC assay. P-TEFb-releasing agents induce the transfer of the inactive YC-P-TEFb (inactive CDK9 in red) to the substrate YN-CTD

chimera (active CDK9 in green), yielding YFP fluorescence.

(F) V-PAC assay in HeLa cells expressing YC-P-TEFb and YN-CTD chimera. Left: representative YFP fluorescence (YFP) and phase contrast (cells) images of cells

are shown. Conditions with (in hours) and without (�) 4-NQO are shown. Right: quantification of YFP-positive cells that were treated as indicated.

See also Figure S2.
RBM7 Releases P-TEFb from the Core of 7SK snRNP
upon Genotoxic Stress
As part of NEXT, RBM7 might tether RNA exosome to 7SK

snRNP, resulting in its disintegration via 7SK nucleolysis. How-

ever, depletion of the NEXT subunits ZCCHC8 and MTR4,

which link RBM7 with the core exosome (Falk et al., 2016; Lu-

bas et al., 2011), failed to prevent P-TEFb activation upon DNA

damage (Figure S3A). Further coIP and RIP-qPCR experiments

confirmed that the 4-NQO-induced release of CDK9 and

HEXIM1 from F-LARP7 left the core of 7SK snRNP intact. Spe-

cifically, F-LARP7 and MePCE remained bound during the

DDR (Figure 4A), and neither the total nor the F-LARP7-bound

levels of 7SK were altered considerably upon 4-NQO treatment

(Figure 4B). Conversely, the levels of HEXIM1-bound 7SK

decreased (Figure 4B). Demonstrating integrity of 7SK in the

core, 4-NQO exposure increased the interaction of F-LARP7

with hnRNP A1 (Figure 4A). Namely, hnRNP A1 and other

hnRNPs replace P-TEFb and HEXIM1 upon Pol II inhibition

by binding SL3 of 7SK (Barrandon et al., 2007; Van Herre-

weghe et al., 2007). Unlike the reassembly of 7SK snRNP

upon removing a P-TEFb inhibitor flavopiridol (FP) from cell

culture medium (Figure S3B), the washout of 4-NQO did not

induce resequestration of CDK9 and HEXIM1 into the 7SK

snRNP, most likely due to the residual DNA damage as indi-

cated by the persisting levels of phosphorylated g-H2AX (Fig-

ure 4A). Thus, RBM7 does not employ the RNA exosome to

activate P-TEFb.
To address if RBM7 could act on 7SK snRNP directly to

release P-TEFb, we performed an in vitro P-TEFb release assay

(Figure 4C). We immunopurified wild-type and mRNP1 F-RBM7

from HEK293 cells under stringent conditions to strip off its

binding partners, including subunits of NEXT, RNA exosome,

and P-TEFb (Figure 4D). Next, we incubated increasing amounts

of the F-RBM7 proteins with the immobilized 7SK snRNP iso-

lated from HeLa cells using an anti-HEXIM1 antibody. Indeed,

F-RBM7 released CDK9 and 7SK from HEXIM1, while the

mRNP1 F-RBM7 failed to do so (Figure 4D).

To uncover direct interactions between RBM7 and 7SK

snRNP, we carried out in vitro pull-down assays with RBM7

and individual 7SK snRNP recombinant proteins. We purified

wild-type and mRNP1 mutant maltose-binding protein (MBP)-

tagged RBM7 (MBP-RBM7), glutathione-S-transferase (GST)-

tagged HEXIM1, LARP7 and the catalytic domain of MePCE

(cMePCE; residues 400–689), and P-TEFb composed of His-

tagged CDK9 andGST-tagged cyclin-box domain of CycT1 (res-

idues 1–272) to near-homogeneity using E. coli and baculovirus-

infected Sf9 insect cells (Figure S3C). We found that MBP-RBM7

interacted with GST-cMePCE and GST-LARP7 (Figures 4E and

4F) and that the 7SK-binding-deficient mRNP1 MBP-RBM7 re-

tained the ability to bind these GST-tagged proteins (Figure S3D;

data not shown). On the contrary, MBP-RBM7 failed to interact

with the His-CDK9/GST-CycT1 heterodimer and GST-HEXIM1

(Figures 4G and S3E). Of note, we could not purify P-TEFb

containing the full-length CycT1 of sufficient quality (data not
Molecular Cell 74, 254–267, April 18, 2019 257



Figure 3. RBM7 Is Critical for the Genotoxic-Stress-Induced Release of P-TEFb from HEXIM1

(A) CoIP of F-HEXIM1 with CDK9 and RBM7 from WCE of HEK293 cells. Conditions with control (�) and RBM7 siRNA #1 (+) and with (+) and without (�) 4-NQO

are shown.

(B) Left: CoIP of HEXIM1 with CDK9 from WCEs of HEK293 cells containing wild-type and mRNP1 F-RBM7. Conditions with (+) and without (�) F-RBM7

induction by tetracycline (Tet) are shown. Right: RIP-qPCR of 7SK in HEXIM1 IP from WCE of HEK293 cells containing wild-type and mRNP1 F-RBM7.

Conditions with wild-type (red bars), mRNP1 (black bars), and without (blue bars) F-RBM7 induction by Tet are shown. Results are presented as the

mean ± SEM (n = 3). *p < 0.05, determined by Student’s t test.

(C) CoIP of HEXIM1 with CDK9 from WCEs of HeLa cells. Conditions with (+) and without (�) 4-NQO or p38i are shown. Levels of phospho-p38MAPK (p38-P)

indicate activation of p38MAPK.

(D) RIP-qPCR of 7SK in F-RBM7 IP fromWCEs of HeLa cells. Conditions with 4-NQO (red bars), 4-NQO and p38i (yellow bars), and without 4-NQO (blue bars) are

shown. Results are presented as the mean ± SEM (n = 3). *p < 0.05; **p < 0.01, determined by Student’s t test. Levels of phospho-p38MAPK (p38-P) indicate

activation of p38MAPK.
shown) and were thus unable to evaluate its binding with RBM7.

Together, these findings suggest that RBM7 activates P-TEFb in

genotoxic-stressed cells via direct interactions with the core

subunits of 7SK snRNP.

P-TEFb Directs Transcriptional Activation by Pol II in
Response to Genotoxic Stress
To disclose if active P-TEFb is vital for shaping a transcriptional

response to genotoxic stress, we treated HeLa cells for 1 and 2 h

with 4-NQO, labeled transcripts metabolically with the nucleo-

side analog 4-thiouridine (4sU) for 30 min, and isolated the newly

transcribed RNAs for sequencing (4sU-seq) (Figure 5A). Concur-

rently with 4-NQO, we also exposed the cells to a suboptimal

concentration of FP to evaluate if pharmacological inhibition of

P-TEFb attenuates the response. Based on the reproducible

4sU-seq data (Figure S4A), we determined differentially ex-

pressed (DE) mRNAs, long intergenic non-coding RNAs

(lincRNAs), uaRNAs, and eRNAs (p value % 0.01; expression

fold-change R 2; Tables S2A–S2D). This revealed that over

one-third of the DE coding genes and most of the DE ncRNAs

are upregulated following genotoxic stress (Figures 5A and

5B). Importantly, the transcriptional changes, which were similar

at both durations of 4-NQO treatments (r = 0.81 for eRNAs to

0.89 for uaRNAs; Figure S4B), were highly dependent on active

P-TEFb (Figure 5B). Notably, the response to 4-NQO was rather
258 Molecular Cell 74, 254–267, April 18, 2019
specific, as only 10%–13% of mRNAs and uaRNAs and 3%–5%

of lincRNAs and eRNAs underwent expression changes (Table

S2E). In accordance with previous work on transcriptional

response to UV (McKay et al., 2004; Williamson et al., 2017),

the upregulated geneswere considerably shorter than the down-

regulated genes (Figure 5C). Finally, p53, the bulky DNA adduct-

inducers camptothecin and cisplatin, and DNA-damaging

doxorubicin and sirolimus were identified by the Ingenuity

Pathway Analysis (IPA) Upstream Regulator analytic as top reg-

ulators that could yield the 4-NQO-like response at coding genes

(Table S2F), suggesting that DNA damage mediates the tran-

scriptional changes.

To explore further the role of P-TEFb in DDR, we compiled a

set of 4-NQO-induced coding genes that showed decreased

expression by at least 20% upon FP co-treatment (4FP set;

Table S3A). IPA identified cell death and survival, cellular devel-

opment, cellular growth and proliferation, gene expression, and

the cell cycle as the most significant cellular functions controlled

by the 551-gene 4FP set (Figure 5D). Comparison with gene sets

of the Molecular Signatures Database (MSigDB) collection re-

vealed that the 4FP set bears similarity to the one controlled by

NF-kB (p value = 6.013 10�57) and of the p53 pathway (p value =

1.233 10�40) (Table S3B) and is enriched for the reported sets of

direct p53 target genes (Andrysik et al., 2017; Fischer, 2017)

(p value = 2.65 3 10�5 to 4.87 3 10�10; Table S3C), suggesting



Figure 4. RBM7 Releases P-TEFb from the Core of 7SK snRNP upon Genotoxic Stress

(A) CoIP of F-LARP7 with 7SK snRNP and g-H2AX from WCE of HEK293 cells. Conditions with (in hours) and without (�) 4-NQO are shown.

(B) RT-qPCR of 7SK (left) and RIP-qPCR of 7SK in F-LARP7 (middle) and HEXIM1 (right) IP fromWCEof HEK293 cells. Conditions with (red bars) andwithout (blue

bars) 4-NQO are shown. Results are presented as the mean ± SEM (n = 2). Protein levels in the IP are shown below the graphs.

(C) Cartoon depicting P-TEFb release assay. Release of inactive P-TEFb (CDK9 in red) from 7SK snRNP abrogates the P-TEFb–HEXIM1 interaction, resulting in

P-TEFb activation (CDK9 in green).

(D) Left: eluates of immunopurified wild-type and mRNP1 F-RBM7 from HEK293 WCE. Middle: western blot analysis of P-TEFb release from HEXIM1 im-

munopurified (aHEXIM1 IP) 7SK snRNP by the F-RBM7 proteins. Control (�, lanes 1 and 2) and conditions with (+) increasing amounts of wild-type and mRNP1

F-RBM7 are shown. Right: RIP-qPCR of 7SK in HEXIM1 IP. Conditions with wild-type (red bars), mRNP1 (black bars), and without (blue bars) F-RBM7 incubation

are shown. Results are presented as the mean ± SEM (n = 4). ***p < 0.001, determined by Student’s t test.

(E–G) Coomassie-stained gels of in vitro MBP pull-down assays of MBP-RBM7 with GST-cMePCE (E), GST-LARP7 (F), and His-CDK9/GST-CycT1 (G).

See also Figure S3.
that these transcription factors (TFs) contribute to specifying the

transcriptional response. Indeed, NF-kB and p53 function in

DDR (Gomes et al., 2006; McKay et al., 2004; Sullivan et al.,

2018; Wu et al., 2006) and require P-TEFb for activating their

target genes (Barboric et al., 2001; Gomes et al., 2006). Further-

more, analysis of the sequences within 5kb from TSSs of the 4FP

set genes with RcisTarget (Aibar et al., 2017) identified enriched

motifs for many DNA-binding activators, including CCAAT-

motif-binding NF-Y and CEBP TFs, cAMP-response-element-

binding ATF/CREB family members, and TFs of the AP-1 family.
(Figure S4C; Table S3D). Moreover, the 4FP set itself is enriched

for nucleic-acid-binding proteins controlling gene expression

(p value = 1.4 3 10�16 to 4.36 3 10�33; Table S3E), which might

further shape the response. Finally, the 4FP set overlaps with the

UV-induced gene sets of the MSigDB collection (p value = 3.83

10�50 to 2.02 3 10�56; Table S3F) and is predicted by IPA to

respond to DNA damage-inducing agents (Table S3G).

We conducted kinetic qRT-PCR assays using HeLa cells to

confirm that nascent transcripts of key functionally important

DDR genes of the 4FP set, such as oncogenic JUN, FOS, and
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Figure 5. Active P-TEFb Is Vital for the Pol II Transcriptional Response to Genotoxic Stress

(A) (Top) Schematic depicting major steps in the generation of 4sU-labeled transcripts (4sU RNA) for 4sU-seq. (Bottom) Pie charts showing the fractions of DE

protein-coding genes (mRNA) in 4-NQO-treated HeLa cells as assessed by 4sU-seq (n = 2).

(B) Bar charts showing the number of DE classes of transcripts in HeLa cells as assessed by 4sU-seq (n = 2). The degrees of differential expression are presented

according to the legend. Conditions with (in hours) and without (�) 4-NQO or FP are shown.

(C) Boxplots indicating the distribution of gene lengths for upregulated and downregulated protein-coding genes. Median gene length for each group is shown.

(D) Top Molecular and Cellular Functions categories of the 4FP gene set as identified by IPA. The number of affected genes per category is shown on the right.

(E) RT-qPCR of the indicated DNA damage-induced unspliced (pre-mRNA), uaRNA, and eRNA transcripts. HeLa cells were treated as indicated by the legend.

Results were normalized to the DMSO control and are presented as the mean ± SEM (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001, determined by Student’s t test.

See also Figure S4 and Tables S3A–S3G.
EGR1, a cell-cycle inhibitor and a pro-survival CDKN1A, an anti-

apoptotic MCL1, and a DDR regulator GADD45b, are upregu-

lated upon DNA-damage-induced P-TEFb activation (Figure 5E).

Importantly, co-administration of FP attenuated the induction of

genes (Figure 5E). Similarly, the levels of oncogenic EGR2 pre-

mRNA and its eRNA, as well as those of EXT1, RBM39, and their

corresponding uaRNAs, increased with a similar kinetic in a

P-TEFb-dependent manner (Figure 5E). Together, these findings

demonstrate that induced Pol II transcription of short protein-

coding and non-coding genomic loci through P-TEFb is a hall-

mark of early DDR.

RBM7 and 7SK snRNP Enable Induction of P-TEFb-
Dependent DDR Genes
We next subjected the above protein-coding DDR genes to

detailed mechanistic analyses. To provide further evidence
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that they are controlled by P-TEFb, wemonitored the occupancy

of CDK9 near TSSs of the seven genes by quantitative chromatin

immunoprecipitation (ChIP-qPCR) assays using unchallenged

and 4-NQO-treated HeLa cells. Furthermore, we followed the

occupancy of total Pol II and its Ser2-P form near the TSS and

in themiddle of gene interior (INT) of each DDR gene. To account

for the 4-NQO-triggered changes in Pol II occupancy at the

genes, we normalized Ser2-P signals to those of total Pol II.

In accordance with our biochemical and transcript findings,

4-NQO exposure elevated occupancy of CDK9 near the TSSs

of nearly all tested DDR genes (Figures 6A and S5A). Concomi-

tantly, levels of the Ser2-P hallmark of productive Pol II elonga-

tion also increased at the gene sites upon genotoxic stress,

particularly near TSSs that correspond to the locations of paused

Pol II (Figures 6A and S5A). Furthermore, FP blocked the

increased Ser2-P levels (Figure S5B). The CDK9, Pol II, and



Figure 6. RBM7 and 7SK snRNP Are Critical for the Induction of P-TEFb-Dependent DDR Genes

(A) ChIP-qPCR of the occupancy of CDK9 and Ser2-P relative to Pol II at transcription start site (TSS) and in the middle of gene interior (INT) of the indicated DDR

genes. The ChIP-qPCR data at the intergenic site�100 kb upstream of FOS TSS is also presented. Conditions with (red bars) and without (blue bars) 4-NQO are

shown. Results were normalized to the DMSO control and are presented as the mean ± SEM (n = 3). *p < 0.05; **p < 0.01, determined by Student’s t test.

(B) RT-qPCR (left) of unspliced transcripts (pre-mRNA) of the indicated DDR genes and ChIP-qPCR (right) of the levels of Ser2-P relative to Pol II at the TSS and

in the middle of gene interior (INT) of the indicated DDR genes in control (siCtrl; red) and RBM7 knockdown (siRBM7 #2; yellow) 4-NQO-treated HeLa cells. In

RT-qPCR assays, the cells were exposed to 4-NQO for 15 min, 0.5 h, 1 h, and 2 h as indicated, and results were normalized to the untreated control and are

presented as the mean ± SEM (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001, determined by Student’s t test. ChIP-qPCR results were normalized to the control values

that were set to 1 and are presented as the mean ± SEM (n = 3). *p < 0.05; **p < 0.01, determined by Student’s t test.

(C and D) RT-qPCR of unspliced transcripts of the indicated DDR genes in parental, wild-type, and mRNP1 F-RBM7-expressing (C) or 7SK-depleted (D)

HeLa cells. The cells were treated for 2 h with DMSO or 4-NQO as indicated by the legend. Results were normalized to the respective DMSO control and are

presented as the mean ± SEM (C: n = 4; D: n = 3). *p < 0.05; **p < 0.01; ***p < 0.001, determined by Student’s t test. Levels of the F-RBM7 proteins and efficacy of

the RN7SK knockdown with the 7SK antisense DNA oligonucleotide (as7SK) are shown on the left.

See also Figure S5 and Table S4.
Ser2-P Pol II occupancies were specific, as they were enriched

significantly over the normal immunoglobulin G (IgG) and FOS in-

tergenic site controls (Table S4). These results highlight further

the role of P-TEFb in stimulating Pol II transcription following

4-NQO exposure.

Our findings thus far support a model whereby genotoxic

stress enhances the interaction of RBM7 with the core of 7SK

snRNP, prompting the release of P-TEFb, which in turn stimu-

lates transcription of specific gene sets. Thus, interfering with

RBM7 or 7SK snRNP should hamper the 4-NQO-triggered

gene induction. Indeed, kinetic qRT-PCR assays showed that

RBM7 knockdown decreased transcription at nearly all analyzed

4-NQO-induced genes in HeLa cells (Figures 6B and S5C). That

the seven genes displayed varying degrees of transcriptional

attenuation in the knockdown cells suggests that the RBM7–

P-TEFb axis might be particularly vital for a subset of the induced

transcriptome. Importantly, this transcriptional defect coincided
with decreased levels of the Ser2-P mark at the induced genes

as revealed by ChIP-qPCR experiments (Figures 6B and S5C),

underscoring the role of RBM7 in P-TEFb-dependent gene

induction. Supporting this notion, HeLa cells constitutively ex-

pressing the 7SK binding-deficient mRNP1 F-RBM7 exhibited

decreased activation of these genes upon 4-NQO exposure

when compared to the parental or F-RBM7 expressing HeLa

cells (Figure 6C), suggesting that mRNP1 F-RBM7 acted in a

dominant-negative fashion. Furthermore, inhibition of p38MAPK,

which interfered with the 4-NQO-induced P-TEFb release and

RBM7–7SK interaction, also diminished the DDR gene induction

(Figure S5D). In contrast, ZCCHC8 and MTR4 knockdown did

not preclude the 4-NQO-triggered gene activation (Figures S5E

and S5F). Tomonitor induction of the genes in cells with compro-

mised 7SK snRNP, we used 7SK-specific phosphorothioate-

modified antisense DNA oligodeoxynucleotide and found that

depleting the scaffolding 7SK compromised the response to
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genotoxic stress (Figure 6D). Given the predicted role of p53 in P-

TEFb-dependent transcriptional response to 4-NQO (Tables

S3B and S3C), we also examined the gene induction by

4-NQO using colorectal carcinoma HCT116 TP53+/+ and

HCT116 TP53�/� cell lines. Although the 4-NQO-triggered

release of CDK9 from HEXIM1 took place in both lines (Fig-

ure S5G), the absence of p53 led to deficient transcription at spe-

cific genes, including its direct targets FOS, EGR2, andCDKN1A

(Figure S5H). Together, these results confirm the vital role of the

axis of RBM7 and P-TEFb and of cellular TFs in the transcrip-

tional induction of important pro-survival and DDR genes.

P-TEFb andRBM7PromoteCell Viability uponGenotoxic
Stress
The significance of RBM7 and P-TEFb in facilitating gene activa-

tion following genotoxic stress led us to hypothesize that

antagonizing this transcriptional axis during DDR should be

detrimental to cell survival. Consistent with this possibility, anal-

ysis of the 4FP set with the IPA Downstream Effects Analysis tool

predicted that the induced P-TEFb-dependent genes promote

cellular viability (Table S3H). Thus, we performed time course

cytotoxicity assays in which compromised membrane integrity

of dead cells is proportional to fluorescence signal generated

by the binding of an otherwise cell impermeable cyanine dye to

DNA. We used HeLa cells, a cell line derived from the retinal

pigment epithelium (RPE-1), and primary HFF-1 cells. Of note,

UV-induced stress leads to death or dysfunction of RPE-1 cells,

which is thought to underlie several retinal diseases, including

central vision loss of the age-related macular degeneration (Ro-

duit and Schorderet, 2008). Confirming our hypothesis, HeLa,

RPE-1, and HFF-1 cells became hypersensitive to 4-NQO

when treated with the concentration of FP that attenuated the

induction of P-TEFb-dependent genes, reaching death of nearly

all cells at 36 and 72 h, respectively (Figures 7A and S6A). Deple-

tion of RBM7 by two different small interfering RNAs (siRNAs)

resulted in a similar hypersensitivity of HeLa and RPE-1 cell lines

to 4-NQO and UV (Figures 7B, S6B, and S6C). Of note, ectopical

expression of F-RBM7, which was resistant to the siRNA-medi-

ated repression targeting the 30 UTR of the endogenous RBM7

transcripts, increased survival of 4-NQO-treated HeLa cells,

underscoring the specificity of our RNAi findings (Figure S6D).

To provide additional evidence for the pro-survival role of

P-TEFb and RBM7 in genotoxic-stressed cells, we conducted

fluorescence-based viability assays in which the indicator

compound resazurin is reduced upon entering cells due to the

reducing power of living cell cytosol, enabling its fluorescence

capacity. Corroborating the cytotoxicity results, P-TEFb inhibi-

tion and RBM7 depletion decreased the viability of 4-NQO-

exposed HeLa cells (Figures S6E and S6F).

Because of the contribution of p53 in P-TEFb-dependent gene

induction following genotoxic stress (Figure S5H; TablesS3B and

S3C), we also performed cytotoxicity assays using HCT116

TP53+/+ and HCT116 TP53�/� cell lines. In contrast to the cells

with functional p53, the cytotoxic response to P-TEFb inhibition

with FP was markedly lowered in 4-NQO-treated HCT116 cells

lacking p53 (Figure S6G), underscoring an important contribution

of this TF to the pro-survival transcriptional program under

P-TEFb control.
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Finally,weasked if apoptosiswas responsible for thehypersen-

sitivity ofP-TEFb-orRBM7-deficient cells togenotoxic stress.We

followed kinetics of apoptosis using a luminescence-based assay

that measures the exposure of phosphatidylserine on the outer

cell membrane surface during apoptosis with two Annexin V

fusion proteins containing fragments ofNanoBit Luciferase (Dixon

et al., 2016), of which complementation is achieved through bind-

ing of Annexin V and phosphatidylserine. Indeed, FP treatment

and RBM7 depletion enhanced 4-NQO-stimulated apoptosis of

HeLa cells (Figures 7C and 7D). Likewise, both perturbations

increased 4-NQO-induced cleavage of poly(ADP-ribose) poly-

merase (PARP) and caspase-3 (Figures S6H and S6I), indepen-

dently confirming apoptosis hyperactivation. Comparison of the

cytotoxicity and apoptosis kinetics shows that the onset of

apoptosis precedes the occurrence of cell death, indicating that

apoptosis was causing the cellular demise. Together, these find-

ings demonstrate the critical role of the transcriptional axis of

RBM7 and P-TEFb in promoting viability of cells under genotoxic

insult.

DISCUSSION

In this study, we investigated themechanisms and importance of

transcriptional activation following genotoxic stress. We uncov-

ered that stimulation of Pol II pause release by P-TEFb is at

the heart of the cellular DDR (Figure 7E). We identified RBM7

as a critical regulator directing the stress-induced release of

P-TEFb from the core of 7SK snRNP, which enables a transcrip-

tional response that is indispensable to the survival of stressed

cells. We envision that upon activation of P-TEFb, gene-specific

TFs, including the known DDR players NF-kB and p53, as well as

those predicted by our motifs analysis, capture the kinase on

chromatin, thereby underwriting specificity of the transcriptional

outcome and resolution to the genotoxic affront.

Our work describes an important paradigm in stress-depen-

dent control of Pol II pause release. The role of RBM7 in the acti-

vation of P-TEFb expands its known regulatory ability, which has

been thus far limited to promoting RNAdegradation (Lubas et al.,

2015). Considering that UV irradiation impairs the RBM7-medi-

ated ribonucleolysis by triggering its phosphorylation at serines

136 and 204 via the p38MAPK-MK2 pathway (Blasius et al.,

2014; Tiedje et al., 2015), genotoxic stress thus switches a func-

tion of RBM7 from facilitating RNA degradation to promoting Pol

II transcription. Of note, we did not find a role of MTR4 and

ZCCHC8 in the activation of P-TEFb. However, because RBM7

binds both proteins at near-stoichiometric levels (Andersen

et al., 2013; Lubas et al., 2011), and given our evidence suggest-

ing the interaction of entire NEXT with 7SK snRNP, RBM7 likely

activates P-TEFb as a subunit of NEXT. This possibility could

explain the dominant-negative effect of the mRNP1 F-RBM7

on the induction of DDR genes, where the mutant protein might

interfere with the function of endogenous RBM7 by dislodging it

from NEXT. We speculate that P-TEFb activation is not limited to

the DDR. It might take place also in response to other types of

stress, such as hypoxic milieu of tumor cells, in which the onco-

genic transcriptional activator HIF1A could co-opt activated

P-TEFb for alleviating Pol II pausing at hypoxia-inducible genes

(Galbraith et al., 2013).



Figure 7. P-TEFb and RBM7 Promote Cell Viability upon Genotoxic Stress

(A and B) Hypersensitivity of HeLa and RPE-1 cells to 4-NQO upon FP treatment (A) and RBM7 depletion (B). The cells were treated as indicated by the legends

and examined at the time points indicated below the graphs. Two independent siRNAs (siRBM7 #2, HeLa cells; siRBM7 #1, RPE-1 cells) were used to deplete

RBM7. Cytotoxicity results are presented as fluorescence values relative to the untreated control and plotted as the mean ± SEM (n = 3). *p < 0.05; **p < 0.01;

***p < 0.001, determined by Student’s t test using 4-NQO and 4-NQO FP or 4-NQO siRBM7 datasets, respectively.

(C and D) FP treatment (C) and RBM7 depletion (D) enhance 4-NQO-induced apoptosis in HeLa cells. The cells were treated as indicated by the legends and

examined at the time points indicated below the graphs. siRBM7 #2 was used to deplete RBM7. Apoptosis results are presented as luminescence values relative

to the untreated control and plotted as themean ± SEM (n = 3). *p < 0.05; **p < 0.01, determined by Student’s t test using 4-NQO and 4-NQOFP or 4-NQO siRBM7

datasets, respectively.

(E) Model of P-TEFb activation by RBM7 during DDR. Genotoxic stress (step 1) provokes phosphorylation (green circle) of RBM7 by the p38MAPK-MK2

pathway. Subsequently, this triggers enhanced interaction of RBM7 with the core of 7SK snRNP (step 2; dashed arrows indicate interactions of RBM7 with

MePCE and LARP7), triggering the release of inactive P-TEFb (CDK9 in red) from the core (step 3), yielding active P-TEFb (CDK9 in green). In turn,

transcription factors (TFs) capture P-TEFb on chromatin (step 4). Stimulation of pro-survival DDR gene transcription at the Pol II pause release phase ensues

(step 5), which is achieved by P-TEFb-mediated phosphorylation (green circles) of Pol II CTD at Ser2 as well as the negative transcription elongation factors

(N-TEFs) NELF and DSIF. While NELF dissociates from Pol II, DSIF becomes a positive transcription elongation factor.

See also Figure S6 and Table S3H.
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We uncover valuable insights into how RBM7 activates

P-TEFb, which shall facilitate further studies of the mechanism

at work. The lack of direct interaction of RBM7 with the

P-TEFb containing cyclin-box domain of CycT1 and HEXIM1

argues against the possibility that RBM7 activates P-TEFb by

dislodging the kinase from HEXIM1, as is the case in the HIV-1

Tat system (Barboric et al., 2007; Ott et al., 2011). Rather, based

on our interaction findings, we propose that following genotoxic

stress-induced activation of the p38MAPK-MK2 pathway, direct

binding of the phosphorylated RBM7with the core of 7SK snRNP

is a pre-requisite for the release of P-TEFb. Given that the RRM

of RBM7 is dispensable for its binding with MePCE and LARP7,

we speculate that the independent interacting surfaces in RBM7,

consisting of the RRM and those likely formed upon phosphory-

lation of the serine residues within the C-terminal unstructured

region of RBM7, mediate its induced binding with 7SK and the

core 7SK snRNP protein subunits, respectively. Because the

interaction of LARP7 with MePCE influences their affinity for

7SK and possibly the overall conformation of 7SK (Brogie and

Price, 2017; Muniz et al., 2013; Xue et al., 2010), any structural

changes of the core by RBM7 could trigger the release of

HEXIM1 and P-TEFb from 7SK snRNP. The possible RBM7-

induced conformational changes might also compromise the

ability of LARP7 to promote the sequestration of P-TEFb into

the snRNP (Markert et al., 2008; Muniz et al., 2013), contributing

to P-TEFb activation.

Importantly, we highlight the significance of stimulating Pol II

transcription upon DNA damage. Since P-TEFb targets Pol II

that is poised for elongation, its activation and chromatin

recruitment is suited uniquely to promote the rapid and coordi-

nated transcriptional response. Our biochemical and gene

induction findings are in agreement with the reported activation

of transcription at promoter-proximal regions following UV

irradiation (Andrade-Lima et al., 2015; Lavigne et al., 2017; Wil-

liamson et al., 2017) and with previous studies that linked the

activation of P-TEFb with the DDR (Gudipaty et al., 2015;

Nguyen et al., 2001; Yang et al., 2001). It remains to be estab-

lished, however, how exactly the stimulation of Pol II pause

release promotes survival of cells under genotoxic stress. We

propose that transcriptional reprogramming plays a pivotal

role. While induction of coding DDR genes as exemplified by

CDKN1A and MCL1 as well as lincRNAs enables cell-cycle ar-

rest and opposes apoptosis (Cazzalini et al., 2010; Huarte et al.,

2010; Zhou et al., 1997), elevated levels of uaRNAs and eRNAs

might concurrently stabilize new gene expression program

through various mechanisms, including modulation of chro-

matin, promotion of TFs occupancy, and augmentation of Pol

II elongation (Kaikkonen and Adelman, 2018; Schaukowitch

et al., 2014). Accordingly, we speculate that the transiently re-

shaped transcriptome sets the stage for subsequent recovery

from the stress. Therein activation of P-TEFb could be also ad-

vantageous to the repair of damaged DNA. Indeed, stimulating

Pol II pause release facilitates transcription-coupled NER (TC-

NER) across the genome (Andrade-Lima et al., 2015; Chiou

et al., 2018; Lavigne et al., 2017). Namely, Pol II stalling at the

sites of DNA damage mediates activation of this pathway (Ver-

meulen and Fousteri, 2013), and because Pol II dissociates

from DNA during individual TC-NER reactions (Chiou et al.,
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2018), the repair of subsequent DNA lesions would benefit

from iterative rounds of Pol II pause release events. Active

P-TEFb might also exert its positive role via its DNA damage-

induced interaction with Cockayne syndrome B translocase

(Boeing et al., 2016), which is instrumental for TC-NER and

resetting of transcription as cells recover from the damage

(Epanchintsev et al., 2017).

Finally, P-TEFb-dependent Pol II pause release is frequently

dysregulated in cancers, particularly in those addicted to

c-MYC and translocations of mixed-lineage leukemia gene

(Dawson et al., 2011; Delmore et al., 2011; Liang et al., 2018),

spurring interest in the development of highly specific CDK9 in-

hibitors for clinical use (Lu et al., 2015; Olson et al., 2018). Our

discovery of the pro-survival role of P-TEFb in genotoxic stress

reinforces the relevance of this key transcriptional kinase to

cancer biology. Hence, we offer a framework for anti-cancer

approaches consisting of targeting RBM7 and P-TEFb together

with DNA-damaging chemotherapeutics. Countering the axis of

RBM7 and P-TEFb might prove especially effectual in combina-

tion with bulky DNA-adduct-inducing platinum-based drugs

such as cisplatin, which shows improved therapeutic outcome

in NER-deficient cancers (Dietlein et al., 2014; Gavande et al.,

2016). The proposed combinatorial approach might also curb

the emergence of drug-resistant tumor cells, a major challenge

of contemporary cancer monotherapies.
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MBP Laboratory of M. Geyer

(University of Bonn)
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MBP-RBM7 This paper N/A

MBP-RBM7 mRNP1 This paper N/A

GST-HEXIM1 Laboratory of M. Geyer

(University of Bonn)

N/A

GST-MePCE (aa 400-689) Laboratory of M. Geyer

(University of Bonn)

N/A

GST-LARP7 Laboratory of M. Geyer

(University of Bonn)
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His-CDK9/GST-CycT1 (aa 1-272) Laboratory of M. Geyer

(University of Bonn)
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Flp-In T-REx Core Kit Thermo Fisher Scientific Cat#K650001

Rapid DNA Ligation Kit Thermo Fisher Scientific Cat#K1423

Dynabeads Protein G Thermo Fisher Scientific Cat#10004D

M-MLV reverse transcriptase Thermo Fisher Scientific Cat#28025-013

SuperScript III reverse transcriptase Thermo Fisher Scientific Cat#18080044

AccuPrime SuperMix I Thermo Fisher Scientific Cat#12342010

Turbo DNA-Free kit Thermo Fisher Scientific Cat#AM1907

Anti-FLAG M2 affinity gel Sigma Cat#A2220

mMACS Streptavidin Kit Miltenyi Cat#130-074-101

TruSeq Stranded mRNA LT Sample Prep Kit Illumina Cat#RS-122-2101

CellTox Green Cytotoxicity Assay Promega Cat#G8741

RealTime-Glo Annexin V Apoptosis and

Necrosis Assay

Promega Cat#JA1011

alamarBlue Cell Viability Assay Thermo Fisher Scientific Cat#DAL 1025

MycoAlert mycoplasma detection kit Lonza Cat#LT07-118

MBPTrap HP – 5 mL prepacked column GE Healthcare Cat#28918780

GSTrap FF – 5 mL prepacked column GE Healthcare Cat#17513001

HiLoad 16/600 Superdex200 pg GE Healthcare Cat#GE28-9893-35

HiLoad 16/600 Superdex75 pg GE Healthcare Cat#GE28-9893-33

Deposited Data

RBM7 iCLIP EMBL-EBI ArrayExpress Archive E-MTAB-6475

4sU-seq NCBI Gene Expression Omnibus GEO: GSE110272

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human reference genome UCSC assembly

hg19 (GRCh37)

Genome Reference Consortium http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/

Human reference genome UCSC assembly

hg 38 (GRCh38)

Genome Reference Consortium http://hgdownload.cse.ucsc.edu/

goldenPath/hg38/

Experimental Models: Cell Lines

HEK293 Flp-In T-REx Thermo Fisher Scientific Cat#R78007

HEK293 Flp-In T-REx 3XFLAG This paper N/A

HEK293 Flp-In T-REx F-RBM7 Laboratory of J. Ule (The Francis

Crick Institute)

N/A

HEK293 Flp-In T-REx F-RBM7 mRNP1 This paper N/A

HEK293 Flp-In T-REx F-LARP7 This paper N/A

HEK293 Flp-In T-REx F-CDK9 This paper N/A

HEK293 Flp-In T-REx F-HEXIM1 This paper N/A

HEK293 Flp-In T-REx F-MTR4 Laboratory of M. Nagahama (Meiji

Pharmaceutical University) (Hiraishi

et al., 2015)

N/A

HeLa Flp-In Laboratory of E. Bertrand

(University of Montpellier)

N/A

HeLa Flp-In F-RBM7 This paper N/A

HeLa Flp-In F-RBM7 mRNP1 This paper N/A

HeLa ATCC Cat#CCL2; RRID: CVCL_0045

RPE-1 ATCC Cat#CRL-4000; RRID: CVCL_4388

HFF-1 ATCC Cat#SCRC-1041; RRID: CVCL_3285

HCT116 TP53+/+ and HCT116 TP53�/� Laboratory of J.M. Espinosa

(University of Colorado)

N/A

Oligonucleotides

pcDNA5/FRT/TO/3XFLAG-RBM7 mRNP1 mutagenesis

primers: TGCGGCTGTGAATTTCAAACATGAAGTG

GCCTGCGCTGGTTTACCATCCTTATCTTTTG

Integrated DNA Technologies N/A

7SK antisense DNA: CCTTGAGAGCTTGTTTGGAGG Integrated DNA Technologies N/A

RBM7 siRNA #1: GCGUAAAGUCAGAAUGAAUTT Integrated DNA Technologies N/A

RBM7 siRNA #2: GGAUAAAGGCAUUGCUUAATT Integrated DNA Technologies N/A

hMTR4 siRNA: CAAUUAAGGCUCUGAGUAATT Integrated DNA Technologies N/A

Control siRNA QIAGEN Cat#SI03650318

Primers for RIP-qPCR assays, see Table S5A Integrated DNA Technologies N/A

Primers for RT-qPCR assays, see Table S5B Integrated DNA Technologies N/A

Primers for ChIP-qPCR assays, see Table S5C Integrated DNA Technologies N/A

Recombinant DNA

pcDNA5/FRT/TO/3XFLAG Laboratory of J. Ule (The Francis

Crick Institute)

N/A

pcDNA5/FRT/TO/3XFLAG-RBM7 Laboratory of J. Ule (The Francis

Crick Institute)

N/A

pcDNA5/FRT/TO/3XFLAG-RBM7 mRNP1 This paper N/A

pcDNA5/FRT/TO/3XFLAG-LARP7 This paper N/A

pcDNA5/FRT/TO/3XFLAG-CDK9 This paper N/A

pcDNA5/FRT/TO/3XFLAG-HEXIM1 This paper N/A

pEF.YN.CTD Laboratory of B.M. Peterlin (UCSF)

(Fujinaga et al., 2015)

N/A

pEF-YC.P-TEFb Laboratory of B.M. Peterlin (UCSF)

(Fujinaga et al., 2015)

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pET28a/MBP Laboratory of M. Geyer

(University of Bonn)

N/A

pET28a/MBP-RBM7 This paper N/A

pET28a/MBP-RBM7 mRNP1 This paper N/A

pGEX4T1/HEXIM1 Laboratory of M. Geyer

(University of Bonn)

N/A

pGEX4T1/MePCE (aa 400-689) Laboratory of M. Geyer

(University of Bonn)

N/A

pGEX4T1/LARP7 Laboratory of M. Geyer

(University of Bonn)

N/A

pGEX4T1/CycT1 (aa 1-272) Laboratory of M. Geyer

(University of Bonn)

N/A

pACEBac1/CDK9 Laboratory of M. Geyer

(University of Bonn)

N/A

Software and Algorithms

iCount Laboratory of T. Curk (University

of Ljubljana)

http://icount.biolab.si https://github.

com/tomazc/iCount

STAR RNA aligner Dobin et al., 2013 RRID: SCR_015899; https://github.

com/alexdobin/STAR

FastQC Babraham Bioinformatics http://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

Cutadapt Martin, 2011 https://cutadapt.readthedocs.io/en/

stable/guide.html

ContextMap 2 Bonfert et al., 2015 https://www.bio.ifi.lmu.de/software/

contextmap/index.html

featureCounts Liao et al., 2014 http://bioinf.wehi.edu.au/featureCounts/

edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/

bioc/html/edgeR.html

Ingenuity Pathway Analysis v01-08 - IPA

Upstream Regulator Analysis

Ingenuity Pathway Analysis http://pages.ingenuity.com/rs/ingenuity/

images/0812%20upstream_regulator_

analysis_whitepaper.pdf

Ingenuity Pathway Analysis v01-08 - IPA

Downstream Effects analytic

Ingenuity Pathway Analysis http://pages.ingenuity.com/rs/ingenuity/

images/0812%20downstream_effects_

analysis_whitepaper.pdf

RcisTarget v1.0.2 Bioconductor (Aibar et al., 2017) http://bioconductor.org/packages/release/

bioc/html/RcisTarget.html

Molecular Signatures Database v6.0 GSEA - Broad Institute

(Subramanian et al., 2005)

http://software.broadinstitute.org/gsea/

msigdb/index.jsp

AxioVision v4.3 Microscopy Software Zeiss N/A

MetaMorph Microscopy Automation and Image

Analysis Software

Molecular Devices N/A

MxPro QPCR Software v4.10 Stratagene N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Matja�z Barbori�c (matjaz.

barboric@helsinki.fi).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HEK293 Flp-In T-REx (Thermo Fisher Scientific), HeLa (ATCC), HeLa Flp-In and human foreskin fibroblast (HFF-1, ATCC) cell lines

were grown in Dulbecco‘s Modified Eagle‘s Medium (D-MEM; Sigma, D5796) supplemented with 10% fetal bovine serum (FBS)

and 100 U/ml penicillin/streptomycin. The parental HEK293 Flp-In T-REx and HeLa Flp-In cell lines were grown with 50 mg/ml of
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Zeocin (InVivogen). HEK293 Flp-In T-REx F-hMTR4 and HeLa Flp-In cell lines were described previously (Hallais et al., 2013; Hiraishi

et al., 2015). HEK293 Flp-In T-REx and HeLa Flp-In cell lines expressing 3XFLAG peptide or 3XFLAG epitope-tagged proteins

were generated using Flp-In T-REx Core Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions and grown

with 100 mg/ml of Hygromycin B Gold (InVivogen) and 3 mg/ml of Blasticidin (InVivogen). Retinal pigment epithelium (RPE-1) cell

line (ATCC) was grown in D-MEM/F12 (Sigma, D8437) supplemented with 10% FBS and 100 U/ml penicillin/streptomycin.

HCT116 TP53+/+ and HCT116 TP53�/� cell lines were grown in McCoy’s 5A Medium (Sigma, M9309) supplemented with 10%

FBS and 100 U/ml penicillin/streptomycin. All cell lines were maintained at 37�C with 5% CO2. Cell lines were confirmed to be

mycoplasma-free using MycoAlert mycoplasma detection kit (Lonza). Cell lines were not authenticated by us, but retrieved from

trusted sources as listed in the Key Resources Table.

METHOD DETAILS

Plasmid DNAs and Mutagenesis
To generate plasmid DNAs encoding 3XFLAG epitope-tagged HEXIM1, LARP7, CDK9 and RBM7, the cDNAs were amplified using

Phusion High-Fidelity DNA polymerase (NEB) with primers carrying the appropriate restriction enzymes sites and cloned using Rapid

DNA Ligation Kit (Thermo Fisher Scientific) into pcDNA5/FRT/TO vector, which wasmodified to encode 3XFLAG peptide upstream of

the multiple cloning site (a gift from Dr. Ule). Q5� Site-Directed Mutagenesis Kit (NEB) was used for generating pcDNA5/FRT/

TO/3XFLAG-RBM7 mRNP1 plasmid encoding the mutant mRNP1 F-RBM7 protein. RBM7 mutagenesis primer sequences and

plasmids used in this study are listed in the Key Resources Table. To generate plasmid DNAs encoding the MBP-tagged RBM7

and mRNP1 RBM7 the cDNAs were cloned into a modified pET28a vector containing an N-terminal MBP sequence followed

by a TEV protease cleavage site. To generate baculovirus transfer vector encoding His-tagged CDK9, its cDNA was cloned into

pACEBac1 with a sequence encoding OctaHis-tag. All other cDNAs encoding full-length HEXIM1 and LARP7 as well as MePCE

(aa 400-689) and CycT1 (aa 1-272) were cloned into a pGEX4T1 vector modified to contain a TEV protease cleavage site between

the GST tag and the protein.

Chemicals and Treatments
4-Nitroquinoline N-oxide (4-NQO; Sigma) was diluted in DMSO to a final concentration of 50 mM, aliquoted, sealed, and stored at

�80�C. UV irradiation was performed in Crosslinker CL-1000 using 254 nm wavelength lamp with dose 40-60 J/m2. Flavopiridol

(Sigma) and 4-Thiouridine (4sU; Carbosynth) were diluted in DMSO to a final concentration of 1 mM and stored at �20�C. Tetracy-
cline hydrochloride (Sigma) was diluted in water to a final concentration of 1 mg/ml and stored at �20�C. SB203580 (Selleckchem)

was diluted in DMSO to a final concentration of 50 mM and stored in �20�C.

RBM7 iCLIP Assay
HEK293 Flp-In T-REx F-RBM7 cells were treated for 24 h with 2 mg/ml of doxycycline (Sigma) to express F-RBM7, exposed for 2 h to

DMSO or 5 mM of 4-NQO, washed once with PBS and UV-cross-linked at 0,15 mJ/cm2 with 254 nm wavelength. Immunoprecipi-

tation of RNA-protein complexes, retrieval of protein-bound RNAs and preparation of cDNA libraries were conducted as reported

previously (Huppertz et al., 2014). In brief, lysates were generated from the crosslinked cells and treated with Turbo DNase (Thermo

Fisher Scientific) and RNase I (1:100 or 1:500; Ambion) for 3 min at 37�C to digest the genomic DNA and trim the RNA to short

fragments of an optimal size range. RNA-protein complexes were immunoprecipitated using anti-FLAG M2 (Sigma, F1804) and

Protein G Dynabeads (Thermo Fisher Scientific). Following stringent high salt washes, the immunoprecipitated RNA was 50 end-
labeled using radioactive 32P isotopes followed by on-bead-ligation of pre-adenylated adaptors to the 30 end. The immunoprecipi-

tated complexes were separated with SDS-PAGE and transferred to a BA-85 nitrocellulosemembrane (Protran). RNAwas recovered

by digesting proteins using proteinase K and then reverse transcribed into cDNA using SuperScript III reverse transcriptase (Thermo

Fisher Sceintific). The reverse transcription primers contained barcode sequences to enable multiplexing and a BamHI restriction

enzyme site. The cDNA was size selected, circularized to add the adaptor to the 50 end, digested at the internal BamHI site, and

then PCR amplified using AccuPrime SuperMix I (Thermo Fisher Scientific). The final PCR libraries were purified on PCR purification

columns (Fermentas) to remove residual PCR reagents and submitted for sequencing. iCLIP libraries were multiplexed and

sequenced on Illumina HiSeq2 machine in a single-end manner with a read length of 50nt. Sequenced reads were de-multiplexed

into individual libraries based on their barcodes and collapsed to remove PCR duplicates. The barcode sequences and adaptors

were trimmed from the 50 and 30 ends, respectively. Following mapping to the human genome (hg19) with STAR aligner (Dobin

et al., 2013) as part of the iCount package (http://icount.biolab.si/), cross-linked nucleotides were defined as the nucleotide upstream

of mapped iCLIP cDNA tags as reported previously (Konig et al., 2010). Replicate iCLIP experiments were performed, cross-linking

positions compared between samples, and the replicates were subsequently combined into groups for final analysis using the iCount

package.

Quantitative RNA Immunoprecipitation Assay
HEK293 Flp-In T-REx cells grown on 15 cm plates were treated for 16 h with 1 mg/ml of tetracycline to express the 3XFLAG epitope-

tagged proteins. The cells at approximately 90% confluency were then exposed to DMSO or 10 mM of 4-NQO for 2 h unless noted
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otherwise. The cells were resuspended in Falcon tubes with 10 mL of ice-cold PBS and cross-linked with 1% formaldehyde at room

temperature for 10 min, which was stopped with 250 mM of glycine for 5 min. The cells were then washed twice with ice-cold PBS,

resuspended in buffer A (5 mMPIPES, 85mMKCL, 0.5%NP-40, pH 7.9), and incubated 10min on ice for nuclear extraction. Nuclear

pellets obtained by centrifugation were lysed in 1 mL of RIPA buffer (50 mM Tris pH 8.0, 150 mM NaCL, 5 mM EDTA pH 8.0, 0.5%

sodium deoxycholate, 1% NP-40, 0.1% SDS) in the presence of EDTA-free Protease Inhibitor Cocktail (Sigma) and SUPERase In

RNase Inhibitor (Thermo Fisher Scientific). The lysates were then sonicated during one round of 35 cycles of 30 s ON/30 s OFF at

4�C with the Bioruptor Plus sonication device (Diagenode, B01020001) combined with the Bioruptor Water cooler (Cat. No.

BioAcc-cool) & Single Cycle Valve (Cat. No. VB-100-0001) at high power setting (position H) using 1.5 mL TPX microtubes (Diage-

node, M-50001). After centrifugation at 13 000 g for 15 min, 5% of supernatant was stored at �80�C for determining RNA input.

We used one third of the rest of the lysate per IP, with the exception of F-RBM7 RIP-qPCRs, where we used one sixth per IP. The

sonicated lysates were then supplemented with additional RIPA buffer to the total volume of 900 mL and incubated overnight at

4�C with 15 mL of antibody-coupled Protein G Dynabeads (Thermo Fisher Scientific). Before adding the supernatant, the beads

were pre-blocked with bovine serum albumin and salmon sperm DNA overnight at a final concentration of 0.2 mg/ml, pre-incubated

in 500 mL of RIPA buffer for 4 h with the antibody and collected by magnetic stand to remove the unbound antibody. We used 3 mg of

normal mouse IgG (Santa Cruz Biotechnology), 3 mg of anti-FLAG M2 (Sigma, F1804), or 3 mg of anti-HEXIM1 (Everest Biotech) anti-

body. The beads were then washed with RIPA high salt buffer (20 mM Tris pH 8.0, 500 mM NaCL, 2 mM EDTA pH 8.0, 1% Triton-X,

0.1% SDS), RIPA low salt buffer (20 mM Tris pH 8.0, 150 mM NaCL, 2 mM EDTA pH 8.0, 1% Triton-X, 0.1% SDS), LiCl wash buffer

(250 mM LiCl, 1% NP-40, 1% sodium deoxycholate) and TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). RNA-protein complexes were

eluted at room temperature with elution buffer (1% SDS, 100 mM NaHCO3). After reverse the cross-linking, RNAs from eluates and

inputs were isolated using TRIzol LS reagent (Thermo Fisher Scientific) according to themanufacturer’s protocol. RNA samples were

DNase-treated with the Turbo DNA-Free kit (Thermo Fisher Scientific), reverse transcribed with SuperScript III reverse transcriptase

(Thermo Fisher Sceintific) and random hexamers (Thermo Fisher Scientific), and amplified using FastStart Universal SYBR Green

QPCR Master (Rox) (Sigma), RNA-specific primer pair, and Stratagene Mx3005 qPCR machine. Primers were from Integrated

DNA Technologies and designed using PrimerQuest Tool. Values were normalized to their levels in RNA inputs and calculated using

the MxPro QPCR Software. Results from at least three independent experiments are presented as the mean ± SEM. Sequences of

the primers used in RIP-qPCR assays are listed in Table S5A.

Co-immunoprecipitation and Western Blotting Assays
HEK293 Flp-In T-REx cells grown on 10 cm plates were treated for 16 h with 1 mg/ml of tetracycline to express the 3XFLAG epitope-

tagged proteins. The cells were then exposed to DMSO or 10 mMof 4-NQO for 2 h unless noted otherwise. Whole cell extracts (WCE)

were prepared by lysing the cell pellets on ice for 15 min with buffer C (20 mM Tris-HCl, 0.5% NP-40, 150 mM NaCl, 1.5 mMMgCl2,

10 mM KCl, 10% Glycerol, 0.5 mM EDTA, pH 7.9) in the presence of EDTA-free Protease Inhibitor Cocktail (Sigma), followed by

optional 10 s sonication with the Misonix XL-2000 Ultrasonic Liquid Processor using the P-1Microprobe 3.2 mm tip, power setting 3,

and centrifugation of lysates at 20 000 g for 15 min. For FLAG immunoprecipitation, WCE were incubated at 4�C for 4 h with

buffer C-equilibrated anti-FLAG M2 affinity gel (Sigma), immuno-complexes were washed three times with buffer C, eluted in SDS

running buffer in the presence of dithiothreitol (Sigma) for 5 min at 95�C and resolved using 12% SDS-PAGE. For total Pol II co-

immunoprecipitation (coIP), 1 mg of the anti-RNA polymerase II CTD repeat YSPTSPS [8WG16] antibody (Abcam) was immobilized

on Protein G Dynabeads (Thermo Fisher Scientific) according to manufacturer’s instructions. WCE were prepared using ELB buffer

(50 mM HEPES-KOH pH 7.9, 0.1% Triton X-100, 5 mM dithiothreitol, 5 mM EDTA, 150 mM NaCl), incubated with the ELB

buffer-equilibrated beads for 16 h at 4�C, and the beads were washed three times ELB buffer. For endogenous HEXIM1 coIP,

2 mg of the anti-HEXIM1 antibody (Everest Biotech) was immobilized on Protein G Dynabeads (Thermo Fisher Scientific) according

to manufacturer’s instructions. In experiments with the p38MAPK inhibitor SB203580, HeLa Flp-In cells were pre-treated with 10 mM

of the inhibitor for 1 h, followed by 1 mM of 4-NQO for 30 min. In the case of HEXIM1 coIP using HEK293 Flp-In T-REx F-RBM7

and HEK293 Flp-In T-REx F-RBM7 mRNP1 cell lines, the cells were treated for 24 h with 1 mg/ml of tetracycline to express the

3XFLAG epitope-tagged proteins. Upon cell lysis in buffer C,WCEwere then added to the buffer C-equilibrated beads and incubated

for 16 h at 4�C, and the beads were washed three times with buffer C. 50% of the beads was used to determine the levels of HEXIM1,

CDK9 and F-RBM7 by western blotting. To determine the levels of 7SK in anti-HEXIM1 coIP, 500 mL of TRI reagent (Sigma) was

added to the remaining 50% of the beads for RNA extraction. RNA samples were DNase-treated with the Turbo DNA-Free kit

(Ambion), reverse transcribed with SuperScript III reverse transcriptase (Thermo Fisher Sceintific) and random hexamers (Thermo

Fisher Scientific), and quantified with the Stratagene Mx3005 qPCR machine as described above using 5S rRNA as a normalizing

control. Results from independent experiments are presented as the mean ± SEM. For western blotting, the following antibodies

were used according to manufacturers’ instructions: anti-FLAG (Sigma); anti-RBM7 (Sigma, Proteintech); anti-HEXIM1 (Everest

Biotech); anti-CDK9 (Santa Cruz Biotechnology, Cell Signaling Technology); anti-LARP7 (a gift from Dr. Qiang Zhou); anti-MePCE

(Santa Cruz Biotechnology); anti-RNA polymerase II CTD repeat YSPTSPS (phospho S2) antibody (Abcam); anti-hnRNPA1 (Abnova);

anti-g-H2AX (Abcam); anti-MTR4 (Abcam); anti-EXOSC3 (Santa Cruz Biotechnology); anti-Cyclin T1 (Santa Cruz Biotechnology),

anti-Cleaved PARP (Cell Signaling Technology); anti-Cleaved Caspase-3 (Cell Signaling Technology). Manufacturers provide valida-

tion for all antibodies.
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Glycerol Gradient Sedimentation Analysis
HeLa Flp-In cells were treated with DMSOor 10 mMof 4-NQO for 2 h, lysed on ice for 15min in 0.6mL of lysis buffer B (20mMHEPES,

0.3MKCl, 0.2mMEDTA, 0.1%NP-40, 0.1%protease inhibitor, pH 7.9). Cellular extracts were then subjected to ultracentrifugation in

a SW41 Ti rotor (Beckman) at 38 000 rpm for 16 h in a 10 mL glycerol gradient solution (10%–30%) containing buffer B. Ten fractions

were collected, and the proteins in each fraction were precipitated by 70% trichloroacetic acid and analyzed by western blotting.

Immunofluorescence Microscopy
HeLa cells were grown on polylysine coated coverslips, treated with DMSO or 10 mM of 4-NQO for 1 h, washed twice in PBS, and

incubated in cytoskeletal buffer (CSK; 10 mM Pipes pH 6.8, 300 mM sucrose, 100 mM NaCl, 3 mM MgCl2, 1 mM EGTA) for 10 min.

Cells were then fixed in 4% formaldehyde in CSK buffer for 1 h on ice and blockedwith TBS-I (10mMTris pH 7.7, 150mMNaCl, 3mM

KCl, 1.5 mM MgCl2, 0.05% Tween 20, 0.1% BSA, 0.2% glycine) for at least 1 h on ice. Primary antibody staining using anti-gH2AX

(Abcam; 1:100 dilution) was done overnight at 4�C, which was followed by two washes with ice cold CSK buffer. Secondary antibody

staining using goat anti-mouse conjugated with AlexaFluor 488 (Thermo Fisher Scientific; 1:1000 dilution) was performed for 4 h at

4�C. Cells were then washed twice with ice cold CSK buffer, incubated with NucBlue reagent (Thermo Fisher Scientific) for 30 min at

room temperature and washed three times with ice cold CSK buffer. Coverslips weremounted with ProLong Gold AntifadeMountant

(Thermo Fisher Scientific). Images were acquired by AxioLab microscope equipped with AxioVision 4.3 Microscopy Software

(Zeiss), and analyzed using CorelDRAW Graphic Suite 2017. Representative images show cells treated with DMSO or 250 nM of

4-NQO for 1 h. The number of cells with at least one nuclear g-H2AX foci from two independent experiments was counted, plotted

as percentage of the total number of cells in the field, and presented as themean ± SEM. For each independent treatment, cells were

counted from at least ten fields containing at least ten cells per field.

Bimolecular Fluorescence Complementation Assay
HeLa Flp-In cells grown on 6-well plates were co-transfected with 0.2 mg of pEF.YN-CTD and 2 mg of pEF.YC-P-TEFb plasmids using

X-tremeGENE transfection reagent (Sigma). Twenty-four hours after transfection, the cells were seeded into 6-8 wells of a 24-well

plate and grown an additional 24 to 48 h. The cells were then left untreated or treated with DMSO, with 2, 5, and 10 mM of 4-NQO

for 0.5, 1, and 4 h, and with 5 mM of SAHA or JQ1 for 1 h. Fluorescence signals were detected using Olympus IX70 fluorescent

microscope. The fluorescence images were analyzed using MetaMorph Microscopy Automation and Image Analysis Software

(Molecular Devices). YFP positive cells were counted manually and averaged from three randomly chosen fields of each sample.

P-TEFb Release Assay
P-TEFb release assay was performed as reported previously (Calo et al., 2015) with the following modifications. WCE from one

confluent 15 cm plate of HeLa cells was prepared by lysing the cell pellets on ice for 30 min with 1.2 mL of buffer C in the presence

of EDTA-free Protease Inhibitor Cocktail (Sigma). To immobilize 7SK snRNP, 1 mL of WCE was incubated at 4�C for 4 h with 75 mL of

Protein G Dynabeads (Thermo Fisher Scientific) that were pre-bound with 5 mg of anti-HEXIM1 antibody (Everest Biotech). For the

control, the remaining 200 mL of WCE was incubated with 15 mL of Protein G Dynabeads (Thermo Fisher Scientific) that were pre-

bound with 1 mg of normal IgG antibody. Immuno-purified F-RBM7 proteins were incubated with the equal amounts of immobilized

7SK snRNP for 2 h on ice, which was followed by the collection of samples for western blotting analysis from 50% of the beads. To

determine the levels of 7SK that remained bound to HEXIM1, 500 mL of TRI reagent (Sigma) was added to the remaining 50% of the

beads for RNA extraction. RNA samples were DNase-treated with the Turbo DNA-Free kit (Thermo Fisher Sceintific), reverse tran-

scribed with SuperScript III reverse transcriptase (Thermo Fisher Sceintific) and random hexamers (Thermo Fisher Scientific), and

quantified with the Stratagene Mx3005 qPCR machine as described above using 5S rRNA as a normalizing control. Results from

independent experiments are presented as the mean ± SEM. For purification of the 3XFLAG epitope-tagged RBM7 proteins, the

corresponding HEK293 Flp-In T-REx F-RBM7 cells grown on three 15 cm plates were treated for 16 h with 1 mg/ml of tetracycline

to express the F-RBM7 proteins. The cells were lysed in buffer C. WCE were then incubated with 30 mL of buffer C-equilibrated

anti-FLAG M2 affinity gel (Sigma) for 16 h in the presence of EDTA-free Protease Inhibitor Cocktail (Sigma) and RNase A (Thermo

Fisher Scientific). After incubation, samples were washed three times with buffer C, where the first two washes contained

600 mM of NaCl. F-RBM7 proteins were eluted with 300 mg/ml of 3XFLAG peptide (ApexBio Technology) in 50 mL of buffer C, and

10 mL (+) or 20 mL (++) of the eluates were used per each reaction. To examine their purity, 10 mL eluate samples were subjected

to SDS-PAGE and western blotting using anti-hMTR4, anti-EXOSC3, and anti-CDK9 antibodies.

Expression of Recombinant Proteins
MBP-RBM7 and mRNP1 MBP-RBM7 proteins were expressed in E. coli BL21 (DE3) Rosetta pLysS cells grown in lysogeny broth

(LB) medium supplemented with kanamycin (50 mg/ml) and chloramphenicol (34 mg/ml). GST-HEXIM1, GST-MePCE (aa 400-689),

GST-CycT1 (aa 1-272) and GST-LARP7 were expressed in E. coli BL21 (DE3) cells grown in LB medium containing ampicillin

(100 mg/ml). All proteins were expressed for 16 h at 18�C after induction of expression with 0.5 mM Isopropyl-b-D-thiogalactopyra-

nosid (IPTG) at an OD 600nm of 0.8. His-CDK9 was expressed in Sf9 insect cells for three days at 27�C by infecting the cells at a

density of 1.5x106 cells/ml with the baculovirus of a multiplicity of infection > 1.
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Purification of Recombinant Proteins
E. coli pellets were resuspended in lysis buffer (50 mM HEPES pH7.6, 150 mM NaCl, 5 mM b-Mercaptoethanol) and lysed by

sonication. Afterward, lysate was centrifuged to remove cell debris, filtered through a 0.45 mm filter and subsequently used for

purification. Proteins were purified using an ÄKTAPrime FPLC system (GE Healthcare) by affinity chromatography using GSTrap

FF or MBPTrap HP columns (GE Healthcare), respectively. Proteins were further purified by size exclusion chromatography

(SEC). For affinity chromatography, columns were equilibrated in lysis buffer prior to sample application. After sample application,

columns were washed excessively with lysis buffer containing 1 M NaCl. The proteins were eluted with lysis buffer containing

10 mM GSH or 10 mM maltose, respectively. To remove residual contaminations, the proteins were subjected to size exclusion

chromatography at a Superdex200 pg (GE Healthcare) or Superdex75 pg (GE Healthcare) and eluted with one column volume of

SEC buffer (20 mM HEPES, 150 mM NaCl, 1 mM TCEP). Fractions were analyzed by Coomassie staining of SDS-PAGE and those

containing the protein of interest were pooled and concentrated by Ultrafiltration (Millipore). The heterodimeric P-TEFb complex was

reconstituted by the addition of GST-CycT1 (aa 1-272) to the lysed His-CDK9-expressing Sf21 cells. The complex was purified by

immobilized metal affinity chromatography using pre-packed Ni-NTA resin (GE Healthcare). After washing in a buffer containing

20 mM imidazol, the complex was eluted from Ni-columns by an imidazol gradient (final imidazol concentration 400 mM). Fractions

containing P-TEFbwere identified by Coomassie staining of SDS-PAGE and pooled for further purification by SEC on a Superdex200

pg column (GE healthcare).

MBP-pull down Assay
For interaction of RBM7 with the components of the 7SK snRNP, 10 mg of MBP or MBP-RBM7 were incubated with 25 mg of prey

protein in 100 mL binding buffer (20 mM HEPES pH7.6, 150 mM NaCl, 1 mM TCEP), followed by addition of 15 mL of a 50% slurry

solution of Amylose beads and incubation for 2 h at 4�C. Afterward, beads were collected by centrifugation and washed three times

with 500 mL of binding buffer. After the final washing step, excess buffer was removed and protein eluted from the beads with binding

buffer containing 30 mMmaltose. The eluate was then transferred to a fresh tube containing SDS sample buffer and boiled for 5 min.

4sU-sequencing Assay
Metabolic labeling and isolation of newly transcribed RNA was performed as reported previously (R€adle et al., 2013). In brief, 80%

confluent HeLa Flp-In cells weremock-treated or treatedwith DMSO, 5 mMof 4-NQO, or 5 mMof 4-NQOand 250 nMof flavopiridol for

1 or 2 h before lysis. Thirtyminutes prior to lysis, the cells were labeledwith 4sU at a final cell culturemedium concentration of 100 mM.

RNA was extracted with TRI reagent (Sigma) and 150 mg of total RNA was used for biotinylation with EZ-Link Biotin-HPDP (Thermo

Fisher Scientific) for 90 min at room temperature. Second round of RNA extraction was performed with chloroform-isopropanol.

mMACS Streptavidin Kit (Miltenyi) was used for separation of labeled RNA, which was followed by elution with DTT and RNA extrac-

tion with isopropanol. Libraries from two biological replicates were prepared and sequenced by Beijing Genomics.

Analysis of 4sU-sequencing Datasets
Sequencing quality was assessed with FastQC and sequencing adapters were trimmed using Cutadapt (Martin, 2011). Reads were

mapped against the human reference genome (GRCh38/hg38) and rRNA sequences using ContextMap 2 (Bonfert et al., 2015). Read

counts for mRNAs, lincRNAs, uaRNAs and eRNAs were calculated using featureCounts (Liao et al., 2014). mRNA and lincRNA

annotation were taken from Gencode version 25 and eRNA annotations were taken from the study by Lubas et al. (2015). eRNAs

within 5 kb of an annotated gene (according to Gencode) were excluded. uaRNAs were defined as the window from �3kb to the

transcription start sites of mRNAs and lincRNAs on the opposite DNA strand. If according to the Gencode annotation another

gene was present within 10 kb upstream of the uaRNA-associated gene, we excluded those uaRNAs from our analysis. Expression

of mRNAs, lincRNAs, uaRNAs and eRNAs was quantified in terms of fragments per kilobase of exons per million mapped reads

(FPKM) and averaged between replicates. Differential gene expression analysis to determine fold-changes in gene expression

and significance of changes was performed using edgeR (Robinson et al., 2010). Here, only RNAs with an average read count

R 1 in the respective samples were included. EdgeR models read counts using the negative binomial distributions and uses the

quantile-adjusted conditional maximum likelihoodmethod to estimate log fold-changes and p values for differential gene expression.

p values obtained from edgeR were corrected by multiple testing using the method by Benjamini and Hochberg (1995) for adjusting

the false discovery rate (FDR) and a p value cutoff of 0.01 was applied. For correlation analysis, Spearman rank correlation was used.

Gene lengths were obtained from Gencode annotations. Table S2E summarizes the number of mRNAs, lincRNAs, uaRNAs and

eRNAs which were differentially expressed upon 1 and 2 h of 4-NQO treatment. A transcript was considered consistently regulated

if (i) the FDR-adjusted p value was % 0.01 in at least one of the two experimental conditions, (ii) it was regulated in the same way

(either up or down) in both experimental conditions and (iii) it was not differentially expressed in the DMSO control condition.

Ingenuity Pathway Analysis and Molecular Signature Database Analysis
Theset ofprotein-codinggenes thataredifferentiallyexpressedupon1and2hof 4-NQOexposureand the4FPgenesetweresubjected

to IPA Upstream Regulator Analysis, which identifies upstream regulators that can explain the observed gene expression changes in a

user’s dataset. The 4FP gene set was also subjected to IPA Downstream Effects analytic, which identifies biological functions that are

expected to be increased or decreased given the observed gene expression changes in a user’s dataset. Detailed explanation of these
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analyses is provided by IPA at http://pages.ingenuity.com/rs/ingenuity/images/0812%20upstream_regulator_analysis_whitepaper.

pdf; and http://pages.ingenuity.com/rs/ingenuity/images/0812%20downstream_effects_analysis_whitepaper.pdf. Overlaps between

the 4FP gene set and gene sets of the Molecular Signatures Database (MSigDB) collection v6.0 were computed using the on-line

tool at http://software.broadinstitute.org/gsea/msigdb/index.jsp. Gene set enrichment analysis, GSEA software, and MSigDB were

described previously (Subramanian et al., 2005).

Transcription Factor Binding Motifs Analysis
Transcription factor binding motifs analysis was performed with RcisTarget version 1.0.2 (Aibar et al., 2017) using the 4FP gene set

and the gene sequences within 5kb window around the transcription start sites (motif collection version mc9nr, regions selected

based on conservation in 7 species). Transcription factors and genes highly ranked to the given motif were annotated to each motif

with the normalized enrichment score (NES) of at least 3.

p53 Target Gene Enrichment Analysis
Four sets of p53 target genes reported in two publications were used for the enrichment analysis in the 4FP data set. In the first

case, we evaluated the complete set of p53 target genes reported in Supplemental File S6 from Andrysik et al. (2017) (p53 – 1) as

well as core p53 target genes defined in this gene set (p53 – 2). In the second case, we evaluated all compiled p53 target genes

of Supplementary Table S1 from Fischer (2017) (p53 – 3) as well as a restricted set of human genes from this table which contained

p53 bound near the promoter (p53 – 4). Enrichment (overlap between the gene sets is significantly larger than expected at random;

odds ratio > 1) and significance of enrichment were determinedwith an exact Fisher’s test. Multiple testing correction was performed

with the method by Benjamini and Hochberg (1995).

RNA extraction and RT-qPCR Analysis
Eighty % confluent HeLa Flp-In cells grown on 6-well plates were left untreated or treated with DMSO, 5 mMof 4-NQO, or co-treated

with 5 mM of 4-NQO and 250 nM of flavopiridol for 15 min, 30 min, 1 h and 2 h. In experiments with the p38MAPK inhibitor SB203580,

HeLa Flp-In cells were pre-treatedwith 10 mMof the inhibitor for 1 h. HCT116 TP53+/+, HCT116 TP53�/� and siRNA-treated HeLa Flp-

In cells were left untreated or treated at eighty% confluency with DMSO or 5 mMof 4-NQO for 30min, 1 h and 2 h. RNA samples were

extracted using TRI Reagent (Sigma), DNase-treated with the Turbo DNA-Free kit (Thermo Fisher Scientific), and reverse transcribed

with M-MLV reverse transcriptase (Thermo Fisher Scientific) and random hexamers (Thermo Fisher Scientific) according to the man-

ufacturers’ instructions. qPCR reactions were performed with diluted cDNAs, primer pairs that spanned exon-intron junction, and

FastStart Universal SYBR Green QPCR Master (Rox) (Sigma) using Stratagene Mx3005 qPCR machine. Primers were from Inte-

grated DNA Technologies and designed using PrimerQuest Tool. Relative levels of transcripts were calculated using the MxPro

QPCR Software v4.10. For 7SK, 7SK DNA value was used as a normalizer. For other RNAs, GAPDH mRNA values were used as

a normalizer. Results from at least three independent experiments are presented as the mean ± SEM. Sequences of the primers

used in RT-qPCR assays are listed in Table S5B.

Quantitative Chromatin Immunoprecipitation Assay
ChIP-qPCR assay was performed as described previously (Ekumi et al., 2015) with the following modifications. HeLa Flp-In cells

grown on 15 cm plates were treated at approximately 90% confluency with DMSO or 5 mM of 4-NQO for 2 h. For the total Pol II

and Ser2-P Pol II assays, the formaldehyde cross-linked cell pellets were lysed in 800 mL of RIPA buffer (50 mM Tris pH 8.0,

150 mM NaCL, 5 mM EDTA pH 8.0, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS) in the presence of EDTA-free Protease

Inhibitor Cocktail (Sigma) and SUPERase In RNase Inhibitor (Thermo Fisher Scientific). Lysates were then sonicated during one

round of 35 cycles of 30 s ON/30 s OFF at 4�C with the Bioruptor Plus sonication device (Diagenode, B01020001) combined with

the Bioruptor Water cooler (Cat. No. BioAcc-cool) & Single Cycle Valve (Cat. No. VB-100-0001) at high power setting (position H) us-

ing 1.5 mL TPX microtubes (Diagenode, M-50001). After centrifugation at 13 000 g for 15 min, 2.5% of the cleared chromatin was

stored at �80�C for determining DNA input. The rest of the sample was divided in three equal parts, which were supplemented

with additional 600 mL of RIPA buffer and incubated overnight at 4�C with 14 mL of antibody-coupled protein G Dynabeads (Thermo

Fisher Scientific). Before adding the cleared chromatin, the beads were pre-blocked with bovine serum albumin and salmon sperm

DNA overnight at a final concentration of 0.2 mg/ml, pre-incubated in 500 mL of RIPA buffer for 4 h with the antibody and collected by

magnetic stand to remove the unbound antibody. We used 2 mg of anti-RNA polymerase II RPB1 (Abcam), 1 mg of anti-RNA poly-

merase II CTD repeat YSPTSPS (phospho S2) (Abcam), and 3 mg of anti-CDK9 (Cell Signaling Technology) antibodies. Additionally,

2 mg of normal mouse IgG (Santa Cruz Biotechnology) and normal rabbit IgG (Santa Cruz Biotechnology) antibodies were used to

determine specificity of the signals. Validation for all antibodies is provided on the manufacturers’ websites. For the CDK9 assays,

the cells were cross-linked using ChIP Cross-link Gold reagent (Diagenode) and formaldehyde according to manufacturer’s instruc-

tions and lysed as above. Lysates were sonicated during 30 cycles of 15 s sonication with the Misonix XL-2000 Ultrasonic Liquid

Processor using the P-1 Microprobe 3.2 mm tip, power setting 6, in 1.7 mL RNase/DNase-free microcentrifuge tubes (Sigma), which

were kept for 1 min on ice between the cycles. Generally, 1/60th of the precipitated ChIP sample was used for each qPCR reaction.

For input DNA, 1/100th of the DNA input dissolved in 100 mL of water was used for each qPCR reaction. Sampleswere amplified using

FastStart Universal SYBR Green QPCR Master (Rox) (Sigma), DNA-specific primer pair, and LightCycler 480 II (Roche) machine.
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Primerswere from Integrated DNA Technologies and designed using PrimerQuest Tool. Valueswere normalized to their levels in DNA

inputs and calculated as a ratio to the values obtained from the DMSO control samples. Ser2-P ChIP values were further normalized

to the values of total Pol II. Results from three independent experiments are presented as themean ± SEM. Sequences of the primers

used in ChIP-qPCR assays along with their genomic locations are listed in Table S5C.

RNA Interference, siRNAs and antisense-oligonucleotide treatment
For RT-qPCR, cytotoxicity, viability, and apoptosis assays, cells grown on 6-well plates were transfected with 50 pmol per well of the

indicated siRNA for 48 h. For co-immunoprecipitation assays, cells grown on 10 cm plates were transfected with 400 pmol per plate

of the indicated siRNA for 48 h. For ChIP-qPCR assay, cells grown on 15 cm plates were transfected with 450 pmol per plate of the

indicated siRNA for 48 h. 7SK was depleted for 48 h using phosphorothioate-modified antisense DNA oligonucleotide (as7SK). 100

pmol per 6-well plate well of the antisense DNA oligonucleotide was used. Transfections were performed using Lipofectamine

RNAiMAX reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions. Control siRNA was from QIAGEN. siRNA

and as7SK oligonucleotide sequences are listed in the Key Resources Table. Efficiency of the knockdowns were evaluated by west-

ern blotting or RT-qPCR assays.

Cytotoxicity Assay
HeLa Flp-In, RPE-1, HFF-1 and HCT116 cells were seeded on 96-well plates 16 h before experiment to ensure 80%confluency. Con-

centrations of chronic treatments with 4-NQO were 250 nM (HeLa Flp-In), 500 nM (HFF-1), and 1 mM (RPE-1 and HCT116). Where

indicated, 250 nM of flavopiridol was used. Flavopiridol concentration for experiments with HCT116 cells was 100 nM. Doses of UV

irradiation were 40 J/m2 (HeLa) and 60 J/m2 (RPE-1). Cytotoxicity was evaluated using CellTox Green Cytotoxicity Assay (Promega).

CellTox Green Dye was added to the cells together with chemicals or immediately after UV irradiation. Fluorescence was measured

at the indicated time points using PerkinElmer Victor X3 Reader. Results from three independent experiments are presented as

fluorescence values relative to the untreated control and plotted as the mean ± SEM.

Viability Assay
HeLa Flp-In cells were seeded on 96-well plates 16 h before experiment to ensure 80% confluency and subjected to the same

experimental conditions as in cytotoxicity assays. Cell viability was examined using alamarBlue Cell Viability Assay (Thermo Fisher

Scientific). Fresh medium containing the alamarBlue cell viability reagent was added to the cells 2 h prior to the indicated time points.

Fluorescence was measured at the indicated time points using PerkinElmer Victor X3 Reader. Results from three independent

experiments are presented as fluorescence values relative to the untreated control and plotted as the mean ± SEM.

Apoptosis Assay
HeLa Flp-In cells were seeded on 96-well plates 16 h before experiment to ensure 80% confluency and subjected to the same

experimental conditions as in cytotoxicity assays. Activation of apoptosis was assessed using RealTime-Glo Annexin V Apoptosis

and Necrosis Assay (Promega). Luminescence was measured at the indicated time points using PerkinElmer Victor X3 Reader.

Results from three independent experiments are presented as luminescence values relative to the untreated control and plotted

as the mean ± SEM.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential gene expression analysis of 4sU-seq data was performed using edgeR (Robinson et al., 2010). P values obtained from

edgeR were corrected by multiple testing using the method by Benjamini and Hochberg (1995) for adjusting the false discovery

rate (FDR) and a p value cutoff of 0.01was applied. Data shown for all qPCR-based experiments and functional assayswere collected

from at least 3 biological replicates as indicated in individual figure legends and are presented as means ± SEM. Statistical

significance and p values were determined by one-tailed Student’s t test performed between the indicated paired groups of

biological replicates. Where the results were not statistically significant, p values are not indicated.

DATA AND SOFTWARE AVAILABILITY

Software
See Key Resources Table.

Data Resources
The RBM7 iCLIP data have been deposited to ArrayExpress Archive (EMBL-EBI) under the accession code E-MTAB-6475. The

4sU-seq data have been deposited toGeneExpressionOmnibus (GEO) repository (NCBI) under the accession codeGEO:GSE110272.
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Figure S1│ F-RBM7 iCLIP. Related to Figure 1.

(A) Correlations between raw sequencing data of the indicated replicates of F-RBM7 iCLIP libraries.
(B) Autoradiogram of 32P-labelled RNA crosslinked to F-RBM7 in iCLIP. Prominent RNA–protein complexes are seen in
the FLAG-M2 immuno-purifications (aFLAG IP) from HEK 293 cells expressing F-RBM7 upon induction by doxycycline
(Dox) but not from control cells. Numbers on the left indicate molecular weight in kilodaltons.
(C) (Left) Representative DAPI and anti-g-H2AX staining images of HeLa cells are shown. Cells were treated with DMSO
and 4-NQO as indicated. (Right) Quantification of g-H2AX foci-positive HeLa cells. The graph shows the percentage of cells
with at least one nuclear g-H2AX foci. Values are plotted as the mean ± s.e.m. (n = 2). *, P < 0.01. Size bar = 10 mm.
(D) CoIP of F-RBM7 with MePCE from WCE of HEK 293 cells. Conditions with (in minutes) and without (-) 4-NQO are
shown.
(E) RIP-qPCR uaRBM39 in F-RBM7 IP from HEK 293 WCE. Conditions with (red bars) and without (blue bars) 4-NQO (0.5
hr) are shown. Results are presented as the mean ± s.e.m. (n = 3). **, P < 0.01.
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Figure S2│Genotoxic stress induces the relocation of P-TEFb from 7SK snRNP to Pol II. Related to Figure 2.

(A) CoIP of F-MTR4 with 7SK snRNP from WCE of HEK 293 cells. Conditions with (+) and without (-) 4-NQO are shown.
(B) Glycerol gradient (10 – 30 %) sedimentation analysis of WCE from HeLa cells. Conditions with (+) and without (-)
4-NQO are shown. The indicated proteins in collected fractions were detected by Western blotting. Fractions that contain
P-TEFb in 7SK snRNP, super elongation complexes (SEC), and outside of these complexes are highlighted.
(C,D) CoIP of HEXIM1 with CDK9 from WCE of HeLa (C) and HFF-1 (D) cells. Conditions with (+) and without (-) UV are
shown.
(E) CoIP of Pol II with F-CDK9 from WCE of HEK 293 cells. Conditions with (+) and without (-) 4-NQO are shown.
(F) V-PAC assay in HeLa cells expressing YC-P-TEFb and YN-CTD chimera. (Left) Representative YFP fluorescence (YFP)
and phase contrast (Cells) images of cells are shown. Cell treatments are shown below the images. (Right) Quantification
of YFP-positive cells that were treated as indicated. Values are plotted as the mean ± s.e.m. (n = 2).
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Figure S3│ RBM7 releases P-TEFb from the core of 7SK snRNP upon genotoxic stress. Related to Figure 4.

(A) CoIP of F-HEXIM1 with CDK9 from WCE of HEK 293 cells. Conditions with control (-), ZCCHC8 and MTR4 siRNA (+)
are shown. The cells were treated (+) or not (-) with 4-NQO.
(B) Co-IP of F-LARP7 with 7SK snRNP and g-H2AX from WCE of HEK 293 cells. Conditions with (in hours) and without (-)
FP are shown.
(C) Coomassie-stained gel of recombinant proteins used in in vitro MBP pull-down assays.
(D,E) Coomassie-stained gels of in vitro MBP pull-down assays of MBP-RBM7 proteins with GST-cMePCE (D) and GST-
HEXIM1 (E).
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Figure S4│ Active P-TEFb is vital for Pol II transcriptional response to genotoxic stress. Related to Figure 5.

(A) Scatterplots comparing raw read counts for protein-coding and lincRNA genes from 4sU-seq data sets (n = 2) are shown
and spearman correlation (r) is indicated. HeLa cells were treated as indicated on top of each graph.
(B) Spearman correlation between log2 fold-change values from 4sU-seq data sets (n = 2) are shown. HeLa cells were
treated as indicated. Type of RNA transcript is shown below the graphs.
(C) Top transcription factor binding motifs within 5kb window around TSS of the 4FP gene set as revealed by RcisTarget.
For each enriched motif, the annotated high confidence TF, normalized enrichment score, and number of genes highly
ranked to the motif are shown.
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Figure S5│ RBM7 and 7SK snRNP are critical for the induction of P-TEFb-dependent DDR genes. Related to Figure 6.

(A) ChIP-qPCR of the occupancy of CDK9 and Ser2-P relative to Pol II at transcription start site (TSS) and in the middle of
gene interior (INT) of the indicated DDR genes. Conditions with (red bars) and without (blue bars) 4-NQO are shown. Results
were normalized to the DMSO control and are presented as the mean ± s.e.m. (n = 3). *, P < 0.05; **, P < 0.01, determined
by Student's t test.
(B) ChIP-qPCR of the levels of Ser2-P relative to Pol II at transcription start site (TSS) and in the middle of gene interior
(INT) of the indicated DDR genes. Conditions with 4-NQO (red bars) and with 4-NQO together with FP (yellow bars) are
shown. Results were normalized to the 4-NQO values that were set to 1 and are presented as the mean ± s.e.m. Data
shown are from one representative experiment (n = 3 technical replicates).
(C) RT-qPCR (left) of unspliced transcripts (pre-mRNA) of the indicated DDR genes and ChIP-qPCR (right) of the levels of
Ser2-P relative to Pol II at transcription start site (TSS) and in the middle of gene interior (INT) of the indicated DDR genes
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in control (siCtrl; red) and RBM7 knockdown (siRBM7 #2; yellow) 4-NQO-treated HeLa cells. In RT-qPCR assays, the cells
were exposed to 4-NQO for 15 min, 0.5 hr, 1 hr and 2 hr as indicated, and results were normalized to the untreated control
and are presented as the mean ± s.e.m. (n = 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001, determined by Student's t test.
ChIP-qPCR results were normalized to the control values that were set to 1 and are presented as the mean ± s.e.m. (n =
3). *, P < 0.05; **, P < 0.01, determined by Student's t test. Efficacy of the RBM7 knockdown is shown on the left. *** P <
0.001, determined by Student's t test.
(D) RT-qPCR of unspliced transcripts of the indicated DDR genes in 4-NQO-treated HeLa cells which were pre-treated or
not with the p38 inhibitor (p38i) SB203580 for 1 hr. The cells were exposed to 4-NQO for 0.5 hr, 1 hr and 2 hr as indicated,
and results were normalized to the untreated control and are presented as the mean ± s.e.m. (n = 3). *, P < 0.05; **, P <
0.01, determined by Student's t test.
(E,F) RT-qPCR of unspliced transcripts of the indicated DDR genes in control (siCtrl; red) and ZCCHC8 (E; siZCCHC8,
yellow) or MTR4 (F; siMTR4, yellow) knockdown 4-NQO-treated HeLa cells. The cells were exposed to 4-NQO for 0.5 hr, 1
hr and 2 hr as indicated, and results were normalized to the untreated control and are presented as the mean ± s.e.m.
(n = 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001, determined by Student's t test. Efficacy of the ZCCHC8 and MTR4
knockdowns are shown on the left. **, P < 0.01; ***, P < 0.001, determined by Student's t test.
(G) CoIP of HEXIM1 with CDK9 from WCE of HCT116 p53+/+ and HCT116 p53-/- cell lines. Conditions with (+) and without
(-) UV are shown.
(H) RT-qPCR of unspliced transcripts of the indicated DDR genes in 4-NQO-treated HCT116 p53+/+ (red) and HCT116
p53-/- (yellow) cell lines. The cells were exposed to 4-NQO for 0.5 hr, 1 hr and 2 hr as indicated, and results were normalized
to the respective untreated control and are presented as the mean ± s.e.m. (n = 3).
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Figure S6│ P-TEFb and RBM7 promote cell viability upon genotoxic stress. Related to Figure 7.

(A,C) Hypersensitivity of HFF-1, HeLa and RPE-1 cells to genotoxic stress upon FP treatment (A) and RBM7 depletion (C).
The cells were treated as indicated by the legends and examined at the time points indicated below the graphs. Two
independent siRNAs (siRBM7 #2, HeLa cells; siRBM7 #1, RPE-1 cells) were used to deplete RBM7. Cytotoxicity results are
presented as fluorescence values relative to the untreated control and plotted as the mean ± s.e.m. (n = 2).
(B) Western blotting analysis of RBM7 depletion in HeLa and RPE-1 cells using RNAi.
(D) Expression of F-RBM7 increases survival of 4-NQO-treated HeLa cells with depleted levels of endogenous RBM7. The
parental, WT and mRNP1 F-RBM7-expressing HeLa cells were treated as indicated by the legends and examined at the
time points indicated below the graphs. siRBM7 #2 was used to deplete RBM7. Cytotoxicity results are presented as
fluorescence values relative to the untreated control and plotted as the mean ± s.e.m. (n = 3). *, P < 0.05, determined by
Student's t test using 4-NQO siRBM7 data sets from parental and F-RBM7 WT HeLa cells. Levels of the F-RBM7 proteins
in RBM7 knockdown cells are shown on the left.
(E,F) FP treatment (E) and RBM7 depletion (F) decrease viability of 4-NQO-treated HeLa cells. The cells were treated as
indicated by the legends and examined at the time points indicated below the graphs. siRBM7 #2 was used to deplete
RBM7. Viability results are presented as fluorescence values relative to the untreated control and plotted as the mean
± s.e.m. (n = 3). *, P < 0.05; ***, P < 0.001, determined by Student's t test.
(G) Hypersensitivity of HCT116 p53+/+ cells to genotoxic stress upon FP treatment. HCT116 cell lines were treated as
indicated by the legend and examined at the time points indicated below the graphs. Cytotoxicity results are presented as
fluorescence values relative to the untreated control in HCT116 p53+/+ cells and plotted as the mean ± s.e.m. (n = 3) *, P <
0.05; **, P < 0.01, determined by Student's t test.
(H,I) Western blotting analysis of Caspase-3 and PARP cleavage using the cleaved products-specific antibodies. HeLa cells
were treated with DMSO, 4-NQO, and FP for eight hours as indicated. siRBM7 #2 was used to deplete RBM7.
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Table S4. Specificity of CDK9, Pol II and Ser2-P ChIP-qPCR assays. Related to Figure 6.

Enrichments of the CDK9, Pol II and Ser2-P chromatin occupancies over the normal IgG and FOS intergenic site controls
are shown. Conditions with (red lines) and without (blue lines) 4-NQO are shown. Data shown are derived from mean % of
input values corresponding to the data presented in Figure 6A, and are presented as fold-enrichments over the controls
which were set to 1. (n = 3).
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