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Preliminaries: problem setting
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๏ Any realistic quantum system S is coupled
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PRL 2020



  
Markovian

 Monte Carlo Wave Function method
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Density matrix and state vector ensemble

Q: How to solve the master equation?

๏ Few exact models and analytical solutions๏ Can we find the solution by evolving an ensemble of
 state vectors instead of directly solving the density matrix? 

�(t) =
�

i

Pi(t)|⇥i(t)⇥�⇥i(t)|

Generally, we can decompose the density matrix as

Suppose now we want to solve the semigroup, 
Markovian GKSL equation

d⇥(t)
dt

= �i[H, ⇥S ] +
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Basics of stochastic state vector evolution

Monte Carlo wave function method (Markovian)
(Dalibard, Castin, Molmer, PRL 1992)

At each point of time, density matrix ρ as average of state vectors Ψi:

�(t) =
1
N

N�

i=1

|⇥i(t)⇥�⇥i(t)|

�2(t1)
�1(t0) �1(t1) ......
�2(t0) ......

...
.

......

Time

�N (t0) �N (t1) �N (tn)

�2(tn)
�1(tn)

The time-evolution of each Ψi contains stochastic 
element due to random quantum jumps. 

Ensemble of
N state vectors
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Jump probability, example

Time-evolution of state vector Ψi:

At each point of time: decide if quantum jump happened.

Pj: probability that a quantum jump occurs in a given time 
interval δt:

Pj = �t � pe

time-step
decay rate

occupation probability
 of excited state

For example: 2-level atom
Probability for atom being transferred from 
the excited to the ground state and photon 
emitted. 

E

G
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Example: driven 2-state system, Markovian

Quantum jump: Discontinuous stochastic change of the state vector.

Excited state probability P
for a driven 2-level atom

Excited state

Ground state

E

G

decay channel
(random jump)

coupling
(deterministic)

d⇥

dt
= �i[H, ⇥] + �

�
��⇥�+ �

1
2
{�+��, ⇥}

⇥

�(t) =
1
N

N�

i=1

|⇥i(t)⇥�⇥i(t)|
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Example: driven 2-state system, Markovian

Quantum jump: Discontinuous stochastic change of the state vector.

Excited state probability P
for a driven 2-level atom

Excited state

Ground state

E

G

decay channel
(random jump)

coupling
(deterministic)

Time

P

Time

single realization ensemble average

damped Rabi oscillation
 of the atom

Markovian Monte Carlo

d⇥

dt
= �i[H, ⇥] + �

�
��⇥�+ �

1
2
{�+��, ⇥}

⇥

�(t) =
1
N

N�

i=1

|⇥i(t)⇥�⇥i(t)|
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Markovian Monte Carlo wave function method

Master equation to be solved  

€ 

dρ t( )
dt

=
1
ih

HS ,ρ[ ] + Γm
m
∑ CmρCm

†

−
1
2

Γm
m
∑ Cm

†

Cmρ + ρCm

†

Cm( )
Master equation to be solved:

Dalibard, Castin, Molmer:  PRL 1992

Solve the time dependent Schrödinger
 equation.

  

€ 

ih d
dt

Ψ(t) = H Ψ(t)

€ 

H = Hs + Hdec
Use non-Hermitian Hamiltonian H which 
includes the decay part Hdec.

  

€ 

Hdec = −
ih
2

Γm
m
∑ Cm

†

Cm

Key for non-Hermitian Hamiltonian:
Jump operators Cm can be found from the 
dissipative part of the master equation.

€ 

δpm = δtΓm Ψ Cm
†

Cm Ψ
For each channel m the jump probability is 
given by the time step size, decay rate, and 
decaying state occupation probability.

For each ensemble member    :
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Markovian Monte Carlo wave function method

Algorithm:
1. Time evolution over time step  

2. Generate random number, did jump occur?

 3. Renormalize     before new time step
 3. Apply jump operator      before
 new time step

No Yes

|⇥i(t + �t)� =
Cj |⇥i(t)�

||Cj |⇥(t)�||

 4. Ensemble average over    :s  gives the density matrix
     and the expectation value of any operator A 

�A⇥(t) =
1
N

�

i

��i(t)|A|�i(t)⇥

|⇥i(t + �t)⇥ =
e�iHeff�t|⇥i(t)⇥⌅

1� �p
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Markovian Monte Carlo wave function method

Measurement scheme interpretation
Two-level atom in vacuum

€ 

P = δtΓ ce
2

Jump operator 

Non-Hermitian Hamiltonian 

Jump probability€ 

C = Γ g e

  

€ 

Hdec = −
ihΓ
2

e e

Measurement scheme: 
continuous measurement of 
photons in the environment.

€ 

cg g + ce e( )⊗ 0 →

c 'g g + c'e e( )⊗ 0 + cλ
λ

∑ g ⊗ 1λ

Two-level atom MC evolution by Total system evolution

๏Continuous measurement of the environmental state gives
   conditional pure state realizations for the open system๏The open system evolution is average of these realizations

12



Markovian Monte Carlo wave function method

Equivalence with the master equation:

€ 

σ(t + δt) = (1− P)
φ(t + δt) φ(t + δt)

1− P
+ P

C Ψ(t) Ψ(t) C
†

Ψ(t) C
†

C Ψ(t)

  

€ 

φ(t + δt) = 1− iHsδt
h

−
Γδt
2
C

†

C
& 

' 
( 

) 

* 
+ Ψ(t)

Keeping in mind two things:
a) the time-evolved state is (1st order in dt, before renormalization):

b) the jump probability is:

€ 

P = δtΓ Ψ C
†

C Ψ

it is relatively easy to see that the ensemble average corresponds to master equation

Average

”No-jump” path weight
t-evol. and normalization Jump and normalization

”Jump” path weight

This gives ”sandwich” term of the m.e.This gives comm. + anticomm. of  m.e.

The state of the ensemble averaged over time step:
(for simplicity here: initial pure state and one decay channel only)

d⇥(t)
dt

= �i[H, ⇥S ] +
⇤

k

�k

�
Ak⇥SA†

k �
1
2
A†

kAk⇥S �
1
2
⇥SA†

kAk
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Questions: ๏What happens when the decay rates depend on time?

๏What happens when the decay rates turn temporarily
    negative?

d⇥(t)
dt

= �i[H, ⇥S ] +
⇤

k

�k(t)
�

Ak⇥S(t)A†
k �

1
2
A†

kAk⇥S(t)� 1
2
⇥SA†

kAk

⇥

14



  
2.

Non-Markovian Quantum Jumps

15

Piilo, Maniscalco, Härkönen, Suominen: 
PRL 2008



Markovian vs. non-Markovian evolution (1)

Markovian dynamics: 
Decay rate constant
in time.

Non-Markovian dynamics: 
Decay rate depends on time,
obtains temporarily negative values.

16



Markovian vs. non-Markovian evolution (1)

Markovian dynamics: 
Decay rate constant
in time.

Non-Markovian dynamics: 
Decay rate depends on time,
obtains temporarily negative values.

Markovian description of quantum jumps fails, since gives 
negative jump probability. 
For example: negative probability that atom emits a photon.

Example: 2-level atom in photonic band gap.

Time

Pj = �t � pe < 0

Decay rate 
(exact)
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Non-Markovian master equation

  

€ 

dρ t( )
dt

=
1
ih

HS ,ρ[ ] + Δm (t)
m
∑ CmρCm

†

−
1
2

Δm
m
∑ (t) Cm

†

Cmρ + ρCm
†

Cm( )

Starting point: 
General non-Markovian master equation local-in-time:

๏ Jump operators  Cm๏ Time dependent decay rates Δm(t).
๏ Decay rates have temporarily negative values.
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Non-Markovian master equation

  

€ 

dρ t( )
dt

=
1
ih

HS ,ρ[ ] + Δm (t)
m
∑ CmρCm

†

−
1
2

Δm
m
∑ (t) Cm

†

Cmρ + ρCm
†

Cm( )

Starting point: 
General non-Markovian master equation local-in-time:

๏ Jump operators  Cm๏ Time dependent decay rates Δm(t).
๏ Decay rates have temporarily negative values.

�� = |g⇥�e|
Example: 2-level atom in photonic band gap. 
Jump operator C for positive decay:

d�(t)
dt

=
1
i� [HS , �] + �(t)|g⇤⇥e|�|e⇤⇥g| � 1

2
�(t)(|e⇤⇥e|� + �|e⇤⇥e|)

Time

E

G
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Non-Markovian quantum jump (NMQJ) method

Quantum jump in negative decay region: 
The direction of the jump process reversed

|�⇥ � |��⇥ =
Cm|�⇥

||Cm|�⇥|| , �m(t) < 0

|�⇥ � |��⇥ =
Cm|�⇥

||Cm|�⇥|| , �m(t) > 0

P =
N

N � �t|�m(t)|�⇥|C†
mCm|⇥(t)⇥

Jump probability:

N: number of ensemble members in the target state
N’: number of ensemble members in the source state

The probability proportional to the target state!

Negative rate process creates coherences

18



NMQJ example

The essential ingredient of non-Markovian system: memory.
Recreation of lost superpositions.

 For example: two-level atom

�(t) < 0

�(t) > 0

€ 

ag g + ae e

€ 

g

�� = |g⇥�e|
E

G

P =
N0

Ng
�t|�(t)| |�⇥0|e⇥|2Jump probability:
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Non-Markovian quantum jumps

€ 

ρ(t) =
N0(t)
N

Ψ0(t) Ψ0(t) +
Ni(t)
N

Ψi (t) Ψi(t)
i
∑ +

Ni, j (t)
N

Ψi, j (t) Ψi, j (t)
i, j
∑ + ...

No jumps
2 random jumps 
(channels i, j)1 random jump 

(channel i)

In terms of probability flow in Hilbert space:
Positive rate
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Non-Markovian quantum jumps

€ 

ρ(t) =
N0(t)
N

Ψ0(t) Ψ0(t) +
Ni(t)
N

Ψi (t) Ψi(t)
i
∑ +

Ni, j (t)
N

Ψi, j (t) Ψi, j (t)
i, j
∑ + ...

No jumps
2 random jumps 
(channels i, j)1 random jump 
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In terms of probability flow in Hilbert space:
Positive rate

Negative rate
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Non-Markovian quantum jumps

€ 

ρ(t) =
N0(t)
N

Ψ0(t) Ψ0(t) +
Ni(t)
N

Ψi (t) Ψi(t)
i
∑ +

Ni, j (t)
N

Ψi, j (t) Ψi, j (t)
i, j
∑ + ...

No jumps
2 random jumps 
(channels i, j)1 random jump 

(channel i)

In terms of probability flow in Hilbert space:
Positive rate

Negative rate

Negative rate: earlier occurred random events get undone. 

Memory in the ensemble: no jump realization carries memory
of the 1 jump realization; 1 jump realization carries the memory of 2 jumps 
realization...

20



NMQJ: general algorithm

Deterministic evolution and positive channel jumps as before...
Negative channel with jumps

...and jump probability for the corresponding channel

where the source state of the jump is

ensemble

21



Basic steps of the proof

The ensemble averaged state over dt is

Here, other quantities are similar as in  
original MCWF  except: 

P’s: jump probabilities 
D’s: jump operators

€ 

σ(t + δt) =

N0(t)
N

Φ0(t + δt) Φ0(t + δt)
1+ n0

+
Ni (t)
N

(1− Pi→0)
i
∑ Φi(t + δt) Φi (t + δt)

1+ ni

+
Ni (t)
N

Pi→0
i
∑ Di→0 Φi (t + δt) Φi(t + δt) Di→0

†

ni→0
+ ...

0 jumps earlier, no jumps to be cancelled

1 jump earlier,  
does not cancel jump at this time 

1 jump earlier, cancels jump 

By plugging in the appropriate 
quantities gives the match with  
the master equation !

Basic idea: 
Weighting jump path with jump probability and deterministic path with 
no-jump probability gives the master equation (as in MCWF) 

22



Example: 2-level atom in photonic band gap
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Example 2

(b)

NMQJ simulation
analytical

The simulation and exact results match.
Typical features of photonic band gap:
๏ Population trapping
๏ Atom-photon bound state.

Density matrix: average over the ensemble
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Example: 2-level atom in photonic band gap
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(b)

NMQJ simulation
analytical

The simulation and exact results match.
Typical features of photonic band gap:
๏ Population trapping
๏ Atom-photon bound state.

Density matrix: average over the ensemble

Example of one state vector history:

I: Quantum jump at positive decay region
destroys the superposition.

II: Due to memory, non-Markovian jump  
recreates the superposition.
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Piilo, Maniscalco, Härkönen, Suominen: PRL 2008

Single state vector history
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Some applications of NMQJ…

๏ Rebentrost, Chakraborty, Aspuru-Guzik:
    “Non-Markovian quantum jump in excitonic energy transfer”
     The Journal of Chemical Physics 2009

24

๏ Ai, Fan, Jin, Cheng:
    “An efficient quantum jump method for coherent energy transfer
     dynamics in photosynthetic systems under the influence of laser fields” 
     (includes comparison to HOM)
     New Journal of Physics 2014 

๏ Renaud, Grozema:
    “Intermolecular Vibrational Modes Speed Up Singlet Fission in 
       Perylenediimide Crystals”

    The Journal of Physical Chemistry Letters 2015



  
3.

Unifying framework:
Rate operator quantum jumps

 (ROQJ)

25

Smirne, Caiaffa, Piilo
PRL 2020

Earlier work with QSD:
Caiaffa, Smirne, Bassi:
PRA 2017
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๏ Pauli matrices �k

๏ Decoherence rates
< 0 t > 0for all

t > 0

What is the problem? Example

“Eternal” non-Markovian master equation

๏ Map CP but breaks CP-divisibility for all

๏ “Eternal” non-Markovian according to RHP criteria

Hall et al PRA 2014

๏…however, P-divisible for all t > 0



“ENM” master equation

Why Markovian MCWF does not work?

๏ Rate for     jump               < <0 for all t>0    �z

gives negative jump probability

Why non-Markovian NMQJ does not work?

๏ Reverse jump probility
singularity in the jump probability
(can not cancel something which never happened)

Note: however, fully classical Markovian
description with ancillas exists 
Megier, Chruscinski, Piilo, Strunz. Scientific Reports 2017

Pj = �t � pe < 0



The problem and the motivation - once again…

What is the most general stochastic jump 
description valid in all regimes?

28

๏ Processes exists which always break CP-divisibility
   and always preserve P-divisibility 

๏ “In-between” Markovian and non-Markovian

๏ No known jump descriptions - without ancillas- exists

Reminder about maps                       :
CP-divisibility:         is CP
P-divisibility:            is P

�t,s
�t,s



ROQJ

29

ROQJ - Rate operator quantum jumps
๏ Master equation

๏ At this stage, consider P-divisible dynamics.

๏ Negative rates allowed, as long as transition
    rate operator positive semi-definite (non-negative
    eigenvalues) for any pure state | (t)i

H (t) = HS(t)�
i~
2

n2�1X

↵=1

c↵(t)⇥
⇣
L
†
↵(t)L↵(t)� 2`⇤ (t),↵L↵(t) + |` (t),↵|2

⌘

deterministic evolution



ROQJ

๏ We can diagonalize and write with eigenvalues

Transfers from current state to eigenstate of
rate operator with a rate given by the eigenvalue

๏ Here defined

๏ Therefore deterministic evolution interrupted by jumps

which occur with probability

๏ Similarity to MCWF.



ROQJ - example

“ENM” master equation

31

๏ Simulation produces analytical results
๏ In general possible to prove match with master equation

๏ Monotonic loss
  of coherence

Bloch vector components

1,2:

3:



Note on measurement scheme

Where is the border between the two?
How do we lose measurement scheme
interpretation?

32

๏ Markovian MCWP has measurement scheme
   interpretation

๏ No known measurement schemes in
  non-Markovian regime
  (Diosi PRL 2008; Gambetta, Wiseman PRL 2008)
   



ROQJ - measurement scheme

33

๏ It is possible to show in mathematically rigorous manner
  that the method has continuous measurement scheme
  interpretation following Barchielli and Belavkin JPhysA 1991

๏ Therefore measurement scheme exists for master
  equations with negative rates as long as P-divisible

๏ Operations for the count (jump) defined by

!t = (t1, j1; t2, j2; . . . tm, jm)

⇢ 7! I!t,j⇢

Tr {I!t,j⇢}

๏ Corresponding state transformation

I!t,j⇢ = V!t,j⇢V
†
!t,j

t j = 1, . . . n� 1

๏ Trajectory upto time t



ROQJ - measurement scheme
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๏ Operations for the count (jump) defined by

Important points:

Does this describe memory effects or not?

๏ The operations are conditioned on the whole trajectory 
๏ For example: the past jumps influence what is the current
  state and may influence the diagonalization and
  the construction of the corresponding jump operator

๏ Measurement scheme: In addition of measurement record
  requires also computational resources and time dependent
  basis for the measurement depending on the trajectory 



Cartoon of different types of memory effects

Schematics with “2D” Bloch sphere
Type of stochastic realizations

Markovian MCWF

๏The jumps take the realizations to same state
  no matter where located prior to jump 



Cartoon of different types of memory effects

In-between region with ROQJ

๏ The jumps take the realizations to states which
  depend on the current state and therefore also 
  on prior sequence



Cartoon of different types of memory effects

Non-Markovian quantum jumps

๏The jumps take the realization to state which
  the realization had in the past (recovery of lost info)



Cartoon of different types of memory effects

Markovian non-MarkovianIn-between

๏ No memory ๏Backflow of info
 for single realizations

๏Backflow of info
 for density operator

๏ “Dependence” from
   the past for single
   realization๏ Always to same state

๏ Going back where
 you were before

๏ Where you go next
 depends where you
 are at the moment

๏ On the level of density
  matrix monotonic loss
  of coherence 

Does this describe
memory or not?



Cartoon of different types of memory effects

Markovian non-MarkovianIn-between

๏ No memory ๏Backflow of info
 for single realizations

๏Backflow of info
 for density operator

๏ “Dependence” from
   the past for single
   realization๏ Always to same state

๏ Going back where
 you were before

๏ Where you go next
 depends where you
 are at the moment

๏ On the level of density
  matrix monotonic loss
  of coherence 

Does this describe
memory or not?

If you answer “yes”, what is the source of NM?

Also classical Markovian rate equation
solution exists (Megier et al SciRep 2017) 

Note that also in Markovian
case dependence from the past
in terms of jump probability via
state populations 



ROQJ - general scheme for all regimes

General scheme including non-Markovian regime

39

๏ Divide transition rate operator to positive and negative
  eigenvalue parts

๏ For positive part, use the earlier scheme

๏ For negative part, calculate the jump probabilities 
  in similar manner as for  NMQJ and use in the reverse
  jumps as a source the eigenstates of the transition
  rate operator



ROQJ - in non-P-div region

Reverse jumps, corresponding to negative eigenvalues of W, are

40

๏ Source of reverse jump is the eigenstate of W:

๏ Probability given by

One general framework for all regimes:

๏ When P-div: jumps to eig. states of rate operator W

๏When P-div: broken: jumps out of the eig. states of W

๏ ROQJ works also when neither MCWF nor NMQJ works
(when P-div. with negative rates)



ROQJ - in non-Markovian (non-P-div) region
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๏ 7-site driven system
Unitary part:
Jump (Lindblad) operators):                       (49 of them)  Li,j = |iihj|
Jump rates (contain negative regions):



  
Is the rate operator unique?

Can we have a family of rate operators?
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Chruscinski, Luoma, Piilo, Smirne
arXiv:2009:11312
(work still ongoing and developed…)



Different choices for rate operator
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๏ Master equation

๏ Rate operator R1

๏ Rate operator R2

For example

R1 =
dX

k=1

�k(t)�k| ih |�k +
X

k

�k(t)| ih |

R2 =
dX

k=1

�k(t)�k| ih |�k + (�1(t) + �2(t))| ih |

K1(t) =
i

2
�(t)1 deterministic evolution

K2(t) =
i

2
[�1(t) + �2(t)]1 deterministic evolution

Chruscinski, Luoma, Piilo, Smirne
arXiv:2009:11312



Different choices for rate operator
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With R1

Example
realizations

Bloch vector x and z
 components: final distribution

Chruscinski, Luoma, Piilo, Smirne
arXiv:2009:11312



Different choices for rate operator
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With R2

Example
realizations

Bloch vector x and z
 components: final distribution

Chruscinski, Luoma, Piilo, Smirne
arXiv:2009:11312



๏ MCWF - Monte Carlo Wave Function (1992)

๏ NMQJ - Non-Markovian Quantum Jumps (2008)

๏ ROQJ - Rate Operator Quantum Jumps (2020)

CONCLUSIONS
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• General starting point for any regime

• Measurement scheme for master equations
 with negative rates (P-div, no ancillas used)

•For the direction of having families of rate operators…

• Unifies the framework for using quantum
  jumps to describe open system dynamics



J. Piilo
adj. prof.

Quantum Physics:
C.-F. Li, G.-C. Guo - Key Lab of Quantum Inf.
USTC, Hefei, China
V. Parigi - LKB, Paris
A. Smirne - Milan
D. Chruscinski - Torun

Complex Systems and Networks:
R. N.  Mantegna - Univ. of Palermo, and
                          UCL, London
M. Tumminello - Univ. of Palermo
F. Lillo - SNS, Pisa, and Santa Fe Institute, USA

Funding:
Magnus Ehrnrooth Foundation

International Collaborations:

Turku Centre for Quantum Physics, Finland

Non-Markovian Processes and Complex Systems Group

J. Nokkala
Collegium
 postdoc

Alumni: K. Härkönen, L. Mazzola. E. Laine, K. Luoma, 

A. Karlsson, J. Nokkala, A. Kurt, S. Hamedani Raja 

O. Siltanen
PhD student


