ICT Solutions for Brilliant Minds

CSC

Linux in Supercomputers

Dr. Sebastian von Alfthan

Supercomputers

Supercomputers provide huge computational performance and storage capacity for wide range of scientific fields

CSC

Supercomputers

Large scale simulations

• For example climate change, space weather, fusion reactors, astronomical phenomena, particle physics

Mid-scale simulations

• For example materials science, energy technology, GIS

Data-intensive computing

- For example computational econometrics, bioinformatics, language research
- Also developing solutions for sensitive data

Artificial intelligence

• For example natural language research, business applications, computer vision

Real-world examples – covid research

- Large computational resources were a vital tool in the fight against COVID
- CSC and other computing center prioritized COVID research and provided fast track access
- Spreading of aerosol particles in air
 - Computational fluid dynamics modelling of airborne transmission of coronavirus
 - Medium scale simulations with few hundred CPU cores
 - o PI Ville Vuorinen, Aalto University

Supercomputer development

- The one constant theme has been an exponential increase in performance
- Top500 list has tracked the performance of 500 fastest systems since early 90's
- Over the years the architecture has changed significantly – finding performance wherever possible
 - Pipelines multiprocessing vector processors – massively parallel systems accelerators

Supercomputer development in Finland

csc

CSC and Linux release

- In 1990 CSC set up one of the premiere file sharing servers of its time – nic.funet.fi also known as <u>ftp.funet.fi</u>
- In 1991 a student from Helsinki University wanted to host his new minix compatitable os at <u>ftp.funet.fi</u>
 - Ari Lemmke who was managing /pub/OS/ did not like original name Freax – since then known as Linux
 - Linus Torvalds releases 17.9.1991 version 0.0.1 of Linux at <u>ftp.funet</u>.fi
 - \circ And still there:

https://ftp.funet.fi/pub/Linux/historical/kernel/old-versions/

by CSC

FUNE

Linux and supercomputing

- Since the beginning supercomputers had been specialized systems
 - o Custom CPU
 - Custom system architectureCustom OS
- Slowly things were changing
 - Custom CPUs being replaced by workstation CPUs when transitioning from vector CPUs to first massively parallel supercomputers
 - More standardized parallel programming models -MPI standard released in 1994
 - $\circ\,\text{UNIX}$ dominant OS in 1990s

Beowulf – the next revolution

- In early 1994 the Beowulf project was initiated at NASA
 ocommodity-based cluster system designed as a cost-effective alternative to large supercomputers
- Many similar projects initiated, also at CSC cost much lower than traditional Supercomputers
- Enablers
 - Large PC market and commodity off the shelf components available (processors, network cards, ...)
 - Full stack of open source software available: GPU compilers, MPI library, and Linux
- Needed an open source OS to enable the model

Avalon

Linux breakthrough

- Also big supercomputer vendors picked up on Beowulf and Linux
- 2008 Linux took over #1 position (Roadrunner)
- Since 2017 all 500 fastest supercomputers run linux
- Overall supercomputing software became to rely almost completely on open source software

Linux breakthrough

- First Linux based supercomputers at CSC in 2005-2007

 Sepeli Cluster 2005 – RHEL 4
 - o Louhi Cray XT4

o Murska Cluster

 Overall supercomputing software became to rely almost completely on open source software

Why linux?

User experience

- Linux felt largely familiar to UNIX users
- Linux is de facto standard in supercomputing and cloud
- You can run a supercomputer OS in your laptop

Performance

- Vendors can modify and tweak open source Linux kernel to achieve best performance – OS still very performant
- Vendors can develop kernel support for prototype hardware best initial support in Linux

Why linux?

Cost

- Licensing costs lower
- OS development costs lower

Flexibility

- Can combine different hardware no vendor lock in
- Recruitment easier to find Linux experts
- Can build even from scratch open source based services • CSC's cPouta Cloud, Taito supercomputer, ...

Sebastian von Alfthan (Ph.d)

Development Manager, Computing environments, CSC

Keilaranta 14 (PL 405), 02101 Espoo +358 40 5888 688 Sebastian.von.alfthan@csc.fi

facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

github.com/CSCfi