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Markovian semigroups
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ON QUANTUM STATISTICAL MECHANICS OF NON-HAMILTONIAN
SYSTEMS

A. KOSSAKOWSKI
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(Received November 9, 1971)*

An axiomatic definition of time evolution (dynamical semi-group) of a physical
system has been given. A dynamical semi-group is defined as a one-parameter semi-
group of linear endomorphisms of the set of all density operators corresponding to
the physical system in question. Some classes of dynamical semi-groups (quantum Pois-
son and Brownian processes) induced by Markov processes on topological groups are
described. Examples of dynamical semi-groups for the harmonic oscillator are given.
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Markovian semigroups

THEQRETICAL PUYSICS

On Neeessary and Sufficient Conditions for a Generator of a
Quantum Dynamical Semi-Group

by
A. KOSSAKOWSKI

Presented by . RUBINOWICZ on Jave 14, 1972

Sunumary. A dynamical semi-group has been defined as a onc-parameter contracting scmi-group
of trare preserving linear eperators on the real Banach space L' (¥) of sell-adjoint trace class
lent operitors on o separable complec Hilbert space ¥, It hus been proved that a linear operator
L with the domain D (L) and the range R(L) both in LY (¥) generates dynamical semi-group
oS (M) = {8512 0) 30 the domain D(L) is dense in L' (X), R(T—L)=L" (M), . is a dissipative
operator in the sense of Lumer and Phillips, and Tr (£p)=0 for all p ¢ D (L). The resulting master
cquation d/dr (S, p)=L (5, p), peD(L), satisfics the positivity and normalization requicements,
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Completely positive dynamical semigroups of N-level
systems™
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E. C. G. Sudarshan
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We establish the general form of the generator of a completely positive dynamical semigroup of an N-level
quantum system, and we apply the result to derive explicit inequalities among the physical parameters
characterizing the Markovian evolution of a 2-level system.

1 IinTEOARLHICTION the eme does indeed go over into
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GKS 1976

Theovem 2.2, A linear operator L : M(N)— M) is
the generator of a completely positive dynamical semi-
group of M(N) if it can be expressed in the form

L:p—~Lp=-ilH,p]
N2sl
L5 e dlF,oFS) +[Fip, FE), pe MOV,

+ —_
23’.12 (2-3)
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Ingarden-Kossakowski-Sudarshan-Gorini
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Markovian semigroup

dmH =d<oo; h=1

d
—AN, =LA
dt t t

Theorem (Gorini-Kossakowski-Sudarshan-Lindblad (1976))

A; = etf is CPTP fort > 0 if and only if

L(p) = —i[H,p]+ Lp(p)

1
o) =3 % (LkaL—2{LLLk,p}> >0
k
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L) = =il + o (Lol - §(EiLw. ) )
k

O(p) = Z'ykLka}; (Completely positive)
k

(®H(X), p) = (X, ®(p)) (HS inner product)

Lip) = —i[H,pH(I’(p)—%{@i(ﬂ)?p}
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Schrédinger vs. Heisenberg

A¢ is CPTP «+— Al is CP unital )

L(o) = ~ilH, 7]+ ®(p) ~ 5{2}(W),p} —> A= e

TrL(p) =0 +— TrAp) =Trp

£ix) = i[H,X]+<I>¢(X)—%{<I>¢(]1),X} L Ab =t

L) =0 +— Afm) =1
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Given ® : My — My, it is CP iff I

(id ® ®)P > 0

f\w |5 Y= Z|k®k

Given L : Mg — My, it generates CP semigroup iff
PL[(id ® £)P]PL >0 I
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. 1 n
L(p) = —ilH,p] + > <Lk;pLZ - 2{L2Lk,p}> ;>0
k

@ 7 are not directly measured in the lab.
@ they DO depend on the representation

Which physical quantities decide about complete positivity? )
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Spectrum

o (€ spec(L) < (* €spec(L)

@ there is a leading eigenvalue fo = 0
@ the corresponding eigenvector defines a density operator
@ Rel, <0 fora=1,2,...,d> —1.

Iy := —Rel, (relaxation rates)

T, :=1/T, (relaxation times)
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Yo VS 'y

. 1
L(p) = —i[H, p] + ZW« <Lk,0LJ12 - 2{L2Lkap}> i >0
A

Positivity of ', is necessary but NOT sufficient for CP
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Example: qubit

3

Fhi=v+vy,lo=y3+1, 3=+

p= %(]l—i—Z:ckak)
k

x = (v1,22,23) — x(t) = (e "oy, e 12

acg,e_r3tx3)
x(t)eB <= Ty >0 (k=1,2,3)

NOT enough for complete positivity!
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Example: qubit

3

N |

Di=m+ym, =wnt+n, Iza=n+r
L is a legitimate Lindbladian <= ~;, > 0 <

M <Te+Tg, TI'n<I'3+Iy, I's<T1+1

F=I'1+Iy+1I's

Iy <

I (k=1,23)

DN | =
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Example: GKS 1976

L(p)=—i—[0s,p] +74+Ly +7-L_+7.L,
1
Li(p) = o4po- —S{o-04,p}
1
L_(p) = U—PU+—§{U+U—,P}

Ez(ﬂ) = 0xp0; —p

1
Fp:=T1=Ty= 2(7++’y_)+2’yz; I'L=T3 =74 +7-
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Example: GKS 1976

1
FT:F1:F2:§<’}’++’Y—)+2727 FL:P3:7++7—

F:=T1+T2+T35=2(y+ +7- +7)

N | =
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Bloch equations

Mk = TI‘(pUk)
M
M$ - AMy - Tir;:
M
My == —AMx - ﬁ
. M. —
Mz _ "z MO
Iy,
2Ty, > Ty

well tested!
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General qubit Lindbladian

Theorem (G. Kimura, PRA 2002)
For any qubit Lindblad generator

=141+ 103

Iy <

I (k=1,2,3)

N | =

061:£§:—FT+iw, b3 = -I'p,
@ (=T, k=123

I''+T2>T13, etc
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general d

Wolf & Cirac, CMP (2008): L =Lp

2
oo< =T
£l < 5

2
I'n = —Rel, — Ty < |€k| < ”»CHoo < EF
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general d

Wolf & Cirac, CMP (2008): L =Lp

2
Lloo £ =T
£l < =

2
I'y = —ReEk = Iy < |€k| < ”»C”oo < gl“

Kimura et al, OSID (2017):  arbitrary L

5
rkg‘d[r }
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general d

Wolf & Cirac, CMP (2008): L =Lp

2
Lloo £ =T
£l < =

2
Fk = —ReEk = Fk < |€k| < ”»CHoo < gl“

Kimura et al, OSID (2017):  arbitrary L

5
rkg‘d[r }

. 1
Conjecture: T’ < 7 r (@>2)
[0
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Conjecture

d-level Lindbladian
F=T1+...+Tp_,

I,<=I (k=1,...,d*-1)

SHN

r
Rk::?k
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Distribution of ¢, /I" for random Lindbladians. Red vertical lines
denote the bound ‘—1/d’. Blue vertical lines denote the bound

3

S. Denisov, T. Laptyeva, W. Tarnowski, DC, and K. iyczkowski, Universal Spectra of
Random Lindblad Operators, PRL 123, 140403 (2019).




On the universal constraints for relaxation rates for quantum dynamical semigroup

Ty < -T

SN

is tight
true for ‘classical’ generator

o

o

@ true for unital semigroups
@ true for Davies generators
o

implications
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44 SMP (Torun 2012)
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40 years after (Torun 2016)




On the universal constraints for relaxation rates for quantum dynamical semigroup




On the universal constraints for relaxation rates for quantum dynamical semigroup

The bound cannot be improved
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Classical generator

T(t) = '™ = semigroup of stochastic matrices
d
Kij>0(i#j); > Kiy=1
i=1

d
Kij =tij — 0ij O tej; tij >0
k=1

Pauli Master Equation: p; = Z (tijpj — tjl-pi)

J

= —Ret! >0 (k=1,...,d—1)

Fg can be completely arbitrary J
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Kij =1t — ;> twj 5 ti; =20

d

1 N/

L(p) = Y tijLijoLl = 5{B.p} 5 Lij =[]
i,5=1

d
B =) bplk)(kl; br=> ti
k A=l
frg, . rh b U {ry = S by) s # )}

r ZZZF%+ZFU

k i#j

1 1
1
Mf<-T & Ty<oT
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Schrédinger vs. Heisenberg

w = invariant state
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LHY,) =Y,

w = invariant state — L(w) =0

(4,B), == Tr(wAB) — [A|2 = (4,4),
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Unital semigroup

Ay := e is unital iff %S(Atp) >0 J
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Unital semigroup

1
To =i > Ykll[Le Yal |2
a 2HYQHE) k 'Yk”[ k Q}H

1
ol
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Unital semigroup

1
[f=—— Li, Yol
Botcher & Wenzel, Lin. Alg. Appl. (2008)

114, BII? < 2]l 4]%|1B]I*

To <> Wl Lkl J
k
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Unital semigroup

. 1
L(p) = —i[H, p] + Z’Yk (Lk,OL;Tf - Q{LLLk:,P}> ;>0
%

Lo <> yellLil
p

1 1
ILkl*=1 — Z’YkzazfaZgF
k

For a unital semigroup
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Beyond unital semigroup — covariant generators

UxL(X)U} = L(UXUY)

U =S e k) (k| 5 x=(a1,...,74) € R?
k=1
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Beyond unital semigroup — covariant generators

L= Lo+ L1+ Lo,
Lo(p) = —ilH,pl; H= Zh!

ﬁl(p) = Z ZLIJ( ZJ)OL@J 5%]{‘])<Jlap}>

i#j=1

d
£ap) = Z%( (6l - 331 l.0} )

i,j7=1

1
. <-r
< ]
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Weak coupling limit — Davies generators

L(p) = —ilH, pl + Lp(p)

o H =Y, hili)lil
o w=Ypili)i

° E% is Hermitian w.r.t. (, ),

UxL(X)UL = L(UXUY)

1
. <-r
< |
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Implications

I'n < =T

S

@ spectra of channels

@ is quantum channel ® Markovian, that is, ® = eL?
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Spectra of channels:

L=&—-1id

The spectrum z, = xo, + iy, of any unital quantum channel satisfy

d2-1
Z xg < d(d—1) — 1+ dzq,,
B=1

fora=1,...,d*>—1.

Theorem

The spectrum z, = x4 + iys of any qubit channel satisfies

|l'1:|:."L‘2| S 1:|:£L’3.

\
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Pauli qubit channels: ®(p) = Zizlpaaapoa

~ 1 0 .
b = <0 A) 3 A = dlag[)\l, )\2, )\3]

Algoet — Fujiwara: |A1£Xo| <1+X3 «— |r1tae| < 1tz3

(—1,-1,1)

(—1,-1,-1)
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Markovianity I', < %I’

M. Wolf, et al PRL (2008).
Unital ®. Is ® = £ ?

L — ly=1ys, — T
Lo

d — zo=e¢€

det® =2 ...z 1 =e b <ello=|z,/7

Vdet ® < |z] <1 J

Frobenius-Perron ring
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Example: qubit Pauli channel

2 =e 1k

sz < z2 (k=1,2,3)

2120 < 23, ete.

Davalos et al, Quantum (2019)
Puchata et al, Phys. Lett. A (2019)
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Conlusions

@ For any qubit Lindbladian I'y < %F

@ For any unital Lindbladian T’ < éf

@ True for any ‘physical generator’ obtained in the weak coupling
limit

@ The conjecture for arbitrary £ is supported by numerical
analysis

@ New bounds for the spectra of channels

@ Necessary condition for Markovianity (for unital channels)
Vdet ® < |24 <1

e D.C., G. Kimura, A. Kossakowski, and Y. Shishido, On the

universal constraints for relaxation rates for quantum
dynamical semigroup, arxiv:2011.10159
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