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Collective motion

Living organisms

Flocking Schooling Swarming

Common approach: Observation — > (Goals/biological role

Optimization approach: Goals ~Game ooy Optimal behaviours

Machine learning

Mazzolini, A., & Celani, A. (2020). Generosity, selfishness and exploitation as optimal greedy strategies for resource sharing. Journal of theoretical biology, 485, 110041.
Pezzotta, A., Adorisio, M., & Celani, A. (2018). Chemotaxis emerges as the optimal solution to cooperative search games. Physical Review E, 98(4), 042401.



ollective motion
Robots

kilobots. Source: wikipedia. Author: asuscreative

Reinforcemente learning ptimal control Biomimetic algorithm



Our model: a system of /V active brownian particles in 2D

dx; = uyn(0,) dt
l do; = f(x;, 0; {x;, 6’]'}]‘;&1‘) dt + \/2D dg,

(&) =0 (E(DE(N) = 6,6t —1)

“ D = Rotational diffusivity

Uy = Linear velocity
f = Control

Particle rotational control f (91- = Heading direction
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Avoiding collisions: an optimization problem with a tradeoff

Collision angle 6,

General second order expansion in
even harmonics of a general cost

G, = 8(x; — x,) g(6;)
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Quadratic control costs
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Control f.
do; = fi(x;, 0;; {x;,0;} ;) dt + /2D d¢,

Rotational noisvi/

Particle rotational control f % Quadratic costs: a theoretically sound choice
i 2
Y, =af /2

e, : Ddt :
' Cost Interpretation j\ §
0 0+ dtf

1) Cognitive cost % (0 +dO,t+di|0,1) x exp(— (df — dtf)z/(ZDdt))
= | Py@+do,t+dt|0,1) « exp(—dO*/(2 D db))

2) Power dissipation v | r
3) Mechanical constraints D[PfHPO] = [dHPO log(P;/Py) ~ dt —

2D
Kullbak-Leibler distance from uncontrolled dynamics

*
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Ullmo, D., Swiecicki, I., & Gobron, T. (2019). Quadratic mean field games. Physics Reports, 799, 1-35.
Todorov, E. (2009). Efficient computation of optimal actions. Proceedings of the national academy of sciences, 106(28), 11478-11483.
Dvijotham, K., & Todorov, E. (2011). A unified theory of linearly solvable optimal control. Artificial Intelligence (UAI), 1.



Constrained minimization with a tradeoff
Find optimal control and associated probability P
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Control  Collision |

C:%JdXd@P aZfiz+leGlj

Average cost
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Lagrange multiplier formulatlon (Pontryagin principle)

L P=0

Dynamics as constraint:
Fokker-Plank equation

%=C+/1(1—JdXd®P> —JdXdG) O(X,0) Z PX,0)

A = multiplier for normalization d(X, @) = multiplier for dynamics at X, ®
X? @ — {xi}a {‘91} N
_ _ N . 2
P = Angle-position joint probability + = 21 [ o Ox, 1(63) 2 %, Ji+ D Z %

Todorov, E. (2009). Proceedings of the national academy of sciences, 106(28), 11478-11483.
Dvijotham, K., & Todorov, E. (2011) Artificial Intelligence (UAI), 1.



Constrained minimization with a tradeoff

%=C+/1(1—J'dXd®P> —JdXd@ O(0,X) Z P(X,0)
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L ]

Stationarity w.r.t. A Normalization

Stationarity w.r.t. @ Dynamics
Stationarity w.r.t. P ' Differential equation for @

Stationarity w.r.t. f; | Control f; as a function of ®

\
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Equation for @ can be linearized and reduces to a many body quantum problem:
as typical in quadratic mean-field games



Mean field hypotheses
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- 1) Agent-wise factorlzatlon 2) Spatial homogeneity
P({x.6 = H X;, :
({ l l 1) p( ! l p(xp l)__p(e)
. 4
Strong hypothesis: agents have o=N-1)/V
to base their behaviour on collective : |
observables '

L 4 1 4
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Lagrangian % = C + A (1 _ Jd@ p) _ Jd@ DO) Z p(0)

0
Cost (= jdé’ p(6) la[go g n(0) - (n)] + f2
N —

Collision Control




Mean field cost and self-interaction

Self-interaction with
Average polarization

o)
C = Jdé’ p(0) l (8o — g1 n(0) - (n)] + f2
N — H—J

Collision Control

mn() = Jd&’ no) p(@) = (n) n(0) - (n) = mcos(6 — 0)

Without loss of generality (rotational invariance) @ = 0

= Jd@ cos(0) p(6)

O
C = Jd@ p(6) [E[go — gy m cos(0)] + % f?
—— e’

Collision Control



Self consistent formulation

— 1 —|do — | dO ©(0) £ p(0
H C+/1( J P) J (0) 2 p(6) m=Jd9P(9)COS(9)

0 |
C = [d&’ p(6) [E[go — g, m cos(0)] + 5]‘2

d
—% =0

df

d
— X =0
dp

linearized Hamilton-Bellman-Jacobi equation



Mathieu equation and self-consistency condition

d
S = ZDEIHZ Assuming
—} 7° = P -stationarity
d F4D d? 0 -periodic BC
a0’ " ae | T
A6 d*
m=Jd€Z2(9) cos(0) — + il cosO| Z+D—7Z =0
N s/ 2D 2D d0?

p(0)

LJB equation = Schroedinger equation for quantum pendulum
- the Mathieu equation -

with “energy” E = — A/4D and eigenfunction Z

We need a real and positive solution -> ground state eigenfunction



Mathieu equation and self-consistency condition
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Mathieu eq. standard notation Fundamental parameters
[a(q) g cos(2y)| Z+ Z'=0 |  h= gli g=—hm
y=6/2 y=€[- ﬂ/27r/2] a D
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Mathieu equation: both eigenvalue a = a(qg) and eigenfunction Zq(m)(H) are known

The ground state is symmetric and depends on m

Self-consistency equation:

m = J q(m)(é’) cos(0) =: F,(m)



Universal behaviour in the tradeoff parameter
m= % ,(m) —  m = m(h)
h is therefore the fundamental parameter

C=C,+ %DZ [hm*(h) + a(—=m(h) h)]

with  Cy = 8 g,/2D* = const

C is only a function of A

) 2
C—-C)= > Jd@ p(0) [glé m cos(f — «9)+aD2 2— logZ ]

do
Ajmtml

CoIIISIon\A.
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Solution: 2nd order phase transition

n =

polar order parameter m

g(m
Self consistency equation & (m) = m
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do 7> )(6’) cos(0) =: F,(m)

g0

h=——

a D?

tradeoff parameter h

Small
Oscillation
approximation

h> 1
1

2v/h

m~ 1



Critical region: perturbative result in small m

Critical point h — h™ = 2

| h=2.01 |

m ~\/&I7) (h — h,)

hm(h 2l
m() cosé’] |

Z(0) ~ >

1 +

Q

|
V2r

f~—Dh.m sin(f)| Sinusoidal regime - \_,

1-0.1

011

C—Cyr —(D?I7)(h—h)?
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Perturbative result for strong coupling: Gaussian regime

Large coupling h > h,

small oscillations

Quantum pendulum 3 Quantum harmonic oscillator

m ] — ——

2/ h
Z(0) ~ (2/ v/ h m(h) ) . exp(—+/h m(h) 6%

fr—Dr/hm(h) 0

C—C,~ D?*[—h/2 + (3/4)\/h]
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The sinusoidal approximation and Vicsek model
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Large coupling i > h, Critical point h — h™ = 2

f~—D+/hm(h) 0

First order approximation!
But |0 < 1

f~—D+/hm(h) sin(0) J = —=Dh.m sin(0)

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

fr —DK(h) sin(0)

Sinusoidal control in both asymptotic cases:ls it true in general?
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Sinusoidal control corresponds to approximation of - .
kinetic regime of stochastic Vicsek model f=—Rm sm(0)

v
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



The sinusoidal approximation and stochastic Vicsek model (kinetic regime)
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a

- dx; = uyn(0,) dt

- dO,=f.dt++/2D d¢,
<5> =0 (&) (1)) = 5,]5@—;;)

‘
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L)

A = interaction radius

focn(e)x PIICH

JEl1]
2
E n(é’) ~ O tA*mn(f) =
JE [1]
Peruani, F., Deutsch, A., & Bar, M. (2008). The European Phys. Journal Special Topics, 157(1), 111-122. .
Vic:ek I'I' and Zl;feiris A 2012 Phys. Rep. 517 7131 40 g ) I I f - D R m Sln(e 9)

Ginelli F 2016 Eur. Phys. J. Spec. Top. 225 2099-2117
Chepizhko A and Kulinskii V 2010 Physica A 389 5347-5352 Y :
Chepizhko A and Kulinskii V 2009 The kinetic regime of the vicsek model AIP Conf. Proc. vol 1198 pp 25-33



Optimal vs sinusoidal control

Optimal control Best sinusoidal control

Find K such that control
f=—DKsin(0)
Minimizes cost
Minimize cost C

- D?
oy choosing contrel/. 1 C — = — [de ps[K* sin® @ — hm cos(0)]
dmMonNgst ailr PoOSSIDIe CONtro \ ,
functional shapes Control E;s-i;n
d , d
— | = KDsmf0—-D— | p,=0
do do

p, x exp(—K cos(6)) Von-Mises



rescaled sinusoidal strength K
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tradeoff parameter h tradeoff parameter h

Sinusoidal control shape

f=—DKsin(@) =— Rm sin(60)

Control strength minimizes cost

K =argminC
K

Best sinusoidal control depends on the same tradeoff parameter A, i.e. K=K(h)



0.5 . . . 0.3 Critical point

h=2.01 popt - o | n

0.4} P 10.2 Critical pointh — h =2
775 fa/D ===
0.3 / \ 1 0.1
Q // \\ o)
0.2¢ \\ 7 0O -
A my, AT (h=2) Vs My, =G (h—2)

0.1} ./ -0

(@) = N ,

O—T[ /2 8 /2 1_[—0.2 n < ﬁ(h hC)

Same exponent y = 1/2 and h,_ but different prefactors f: prefactor is a third order effect
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ldentical controls up to redefinition of m as a function of A

f=—2Dm. . sin(®)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

opt/sin
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Strong coupling: gaussian case
h>h. =2

Polarization and costs match at leading order:
Fully Gaussian scenario

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Polarization
Mgy & My, & 1 —1/4/4 h
| Costs |

---------------------------------------------------------------------------------------------------------------------------------------------
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Controls do not match in general
but
They do for small angles

fin = fops ™ — DA/hsin(@) it 0] <1

Only small angles count in this regime

v
---------------------------------------------------------------------------------------------------------------------------------------------



General comparison

Differences in probability density

peak around h =~ 8 Differences in control increase with A
0.02 | | | 10 i | | h:2.01l j
h=3 ——
0.017 \ /[ ‘ h=8
\ / oI h=50
O 4/—\—/‘\> o
S 2
Q . ©
-0.02F .5 _ - -5F
-0.03+ (@) - ol ()
~TT -T1/2 8 /2 TT ~TT -Tt/2 8 /2 TT

We should look at costs



Cost comparison: optimal vs best sinusoidal control
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AC(h) T Optlmal(h) smusazdal(h)

Universal behaviour as a function of /
once rescaled by D?

collision cost
control cost
total cost
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For any given h, the difference AC
can become arbitrarily large

but

What about relative cost AC/C ?

No universal behaviour: AC/C
Depends on g,

C.,;= (6 D*12)[gy— m~g]

Two notable cases:
1) pure alignment reward: g5 = 0

max(AC/C)=—-=1/8ath =0

2) pure collision: g, = ¢,

max(AC/C)~ — .02 ath ~ 4.8



Optimal solution vs sinusoidal model

Summary

Equivalence up to redefinition of m
mg =~ \/(1/2) (h —2) My R \/(4/7) (h—2)

Critical case —

Strong coupling case ———» Equivalence at leading order

Relative cost differences are

General cost analyis =——» . - .
always small in realistic scenarios



Conclusion

1) Optimal control theory or mean field game formalism -> promising framework
for collective behaviours

2) Exact mean field solution -> critical behaviour

3) Remarkably Vicsek-like (sinusoidal) interaction close to optimal control, at
least in the mean field formulation.

Outlook

1) Beyond mean field
2) Different dynamics
3) Beyond spatial homogeneity



Thank you for your attention



