Fast is hot: energetics of information erasure and the overhead to Landauer's bound at low dissipation

Salambô Dago, Jorge Pereda, Sergio Ciliberto, Ludovic Bellon

Laboratoire de Physique, Université de Lyon, ENS de Lyon, CNRS

Energetic cost of information processing

- Our brain: ~20 W (vs ~100 W for our body)
- Internet: 10% of electricity worldwide
- Supercomputers: costs are driven by Flops/W

Energetic cost of information processing

Physical Limit ? Rolf Landauer (IBM, 1961):

1-bit erasure costs at least $k_B T \ln 2 = 3 \times 10^{-21} \text{ J}$

R. Landauer, *IBM Journal of Research and Development* **5**, 183 (1961)

Energetic cost of information processing

T

Physical Limit ? **Rolf Landauer** (IBM, 1961): 1-bit erasure costs at least $k_B T \ln 2 = 3 \times 10^{-21} \text{ J}$

$$S = k_B \ln N$$
 [Boltzmann]

$$N = 2 \qquad \qquad N = 1$$
$$\Delta S = -k_B \ln 2 \ge -\frac{\langle \mathcal{Q} \rangle}{T}$$

 $\{0,1\}$ erasure $\{0\}$

W memory Q

$$\langle \mathcal{Q} \rangle = \langle \mathcal{W} \rangle \ge k_B T \ln 2$$

R. Landauer, *IBM Journal of Research and Development* **5**, 183 (1961)

Roadmap

Physical Limit ? **Rolf Landauer** (IBM, 1961): 1-bit erasure costs at least $k_B T \ln 2 = 3 \times 10^{-21} \text{ J}$

> Experimental demonstration ? Distance to the bound ?

Fast operation ?

Energetics ?

$$\langle \mathcal{Q} \rangle = \langle \mathcal{W} \rangle \gtrsim k_B T \ln 2$$

L. Bellon - University of Helsinki - may 2021

L. Bellon - University of Helsinki - may 2021

L. Bellon - University of Helsinki - may 2021

- 1 DOF
- Bistable potential
- k_BT scale
- Tunable potential $\longrightarrow U(x,\lambda)$
- \bullet Measure $\mathcal{Q}\,\&\,\mathcal{W}$

/ white noise, variance 1

Overdamped Langevin eq.

$$\dot{x} + \frac{\partial U}{\partial x} = \sqrt{2k_B T \gamma} \eta$$

$$\mathcal{W} = \int_0^\tau \frac{\partial U}{\partial \lambda} \dot{\lambda} dt \qquad \mathcal{Q} = -\int_0^\tau \frac{\partial U}{\partial x} \dot{x} dt$$

$$\Delta U = \mathcal{W} - \mathcal{Q}$$

K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics 799 (Springer, 2010)

Stochastic thermodynamics

white noise, variance 1

Underdamped Langevin eq. $m\ddot{x} + \gamma\dot{x} + \frac{\partial U}{\partial x} = \sqrt{2k_BT\gamma}\eta$

$$\mathcal{W} = \int_0^\tau \frac{\partial U}{\partial \lambda} \dot{\lambda} dt \qquad \mathcal{Q} = -\int_0^\tau \frac{\partial U}{\partial x} \dot{x} dt - \Delta K$$

$$\Delta K + \Delta U = \mathcal{W} - \mathcal{Q}$$

S. Albert, A. Archambault, A. Petrosyan, C. Crauste-Thibierge, L. Bellon, S. Ciliberto, EPL 131, 10008 (2020)

• 1 DOF

- Bistable potential
- k_BT scale
- Tunable potential
- ✓ Measure Q & W

- ✓ 1 DOF
- ✓ Bistable potential
- $\checkmark k_B T$ scale
- ✓ Tunable potential

✓ Measure Q & W

- ✓ 1 DOF
- ✓ Bistable potential
- $\checkmark k_B T$ scale
- ✓ Tunable potential
- ✓ Measure Q & W

- ✓ 1 DOF
- ✓ Bistable potential
- $\checkmark k_B T$ scale
- ✓ Tunable potential
- ✓ Measure Q & W

Karel Proesmans, Jannik Ehrich, John Bechhoefer, Phys. Rev. Lett. 125, 100602 (2020)

Karel Proesmans, Jannik Ehrich, John Bechhoefer, Phys. Rev. Lett. 125, 100602 (2020)

Underdamped oscillator

- 1 DOF
- Bistable potential
- k_BT scale
- Tunable potential
- \bullet Measure $\mathcal{Q}\,\&\,\mathcal{W}$

$$U(x,\lambda) = \frac{1}{2}k(x-\lambda)^{2}$$

$$\sigma = \sqrt{\frac{k_{B}T}{k}} \sim 1 \text{ nm}$$

$$f_{0} = \sqrt{\frac{k}{m}} = 1270 \text{ Hz}, \quad Q \sim 10 \rightarrow \tau_{\text{relax}} = \frac{Q}{\pi f_{0}} \sim 2.5 \text{ms}$$

S. Albert, A. Archambault, A. Petrosyan, C. Crauste-Thibierge, L. Bellon, S. Ciliberto, EPL 131, 10008 (2020)

Underdamped oscillator

- 1 DOF
- Bistable potential
- k_BT scale
- Tunable potential
- \bullet Measure $\mathcal{Q}\,\&\,\mathcal{W}$

 $U(x,\lambda)$ arbitrary !

$$\sigma = \sqrt{\frac{k_B T}{k}} \sim 1 \,\mathrm{nm}$$

$$Q$$

 $f_0 = \sqrt{\frac{\pi}{m}} = 1270 \,\mathrm{Hz}, \quad Q \sim 10 \rightarrow \tau_{\mathrm{relax}} = \frac{\tau}{\pi f_0} \sim 2.5 ms$

Bistable underdamped oscillator

<u>Click here to play video online</u>

$$\langle \mathcal{Q} \rangle = \langle \mathcal{W} \rangle = k_B T \left(\ln 2 + \frac{B}{\tau} \right)$$

$$\langle \mathcal{Q} \rangle = \langle \mathcal{W} \rangle = k_B T \left(\ln 2 + \frac{B}{\tau} \right)$$

$$\langle \mathcal{Q} \rangle = \langle \mathcal{W} \rangle = k_B T \left(\ln 2 + \frac{B}{\tau} \right)$$

S. Dago, J. Pereda, N. Barros, S. Ciliberto, L. Bellon, Phys. Rev. Lett. 126, 170601 (2021)

$$P(x,v) = \frac{1}{Z}e^{-\frac{1}{2}\beta mv^2}e^{-\frac{1}{2}\beta k(|x|-\lambda)^2}, \quad \beta = \frac{1}{k_B T}, \quad Z = \frac{2\pi}{\sqrt{km\beta}}V, \quad V = 1 + \operatorname{erf}\left(\sqrt{\frac{k\beta}{2}}\lambda\right)$$

$$\langle E \rangle = \langle U + K \rangle = -\frac{\partial \ln Z}{\partial \beta} = k_B T + k_B T^2 \frac{\partial \ln V}{\partial T}$$

$$P(x,v) = \frac{1}{Z}e^{-\frac{1}{2}\beta mv^2}e^{-\frac{1}{2}\beta k(|x|-\lambda)^2}, \quad \beta = \frac{1}{k_B T}, \quad Z = \frac{2\pi}{\sqrt{km\beta}}V, \quad V = 1 + \operatorname{erf}\left(\sqrt{\frac{k\beta}{2}}\lambda\right)$$

$$\langle E \rangle = \langle U + K \rangle = -\frac{\partial \ln Z}{\partial \beta} = k_B T + k_B T^2 \frac{\partial \ln V}{\partial T}$$

$$\frac{\partial \langle E \rangle}{\partial T} \dot{T} + \frac{\partial \langle E \rangle}{\partial \lambda} \dot{\lambda} = \langle \dot{E} \rangle = \langle \dot{\mathcal{W}} \rangle - \langle \dot{\mathcal{Q}} \rangle = -k_B T \frac{\partial \ln V}{\partial \lambda} \dot{\lambda} + \frac{\omega_0}{Q} k_B (T - T_0)$$

S. Dago, L. Bellon, arXiv: 2105.12023 (2021)

$$P(x,v) = \frac{1}{Z}e^{-\frac{1}{2}\beta mv^2}e^{-\frac{1}{2}\beta k(|x|-\lambda)^2}, \quad \beta = \frac{1}{k_B T}, \quad Z = \frac{2\pi}{\sqrt{km\beta}}V, \quad V = 1 + \operatorname{erf}\left(\sqrt{\frac{k\beta}{2}}\lambda\right)$$

$$\langle E \rangle = \langle U + K \rangle = -\frac{\partial \ln Z}{\partial \beta} = k_B T + k_B T^2 \frac{\partial \ln V}{\partial T}$$

$$\frac{\partial \langle E \rangle}{\partial T} \dot{T} + \frac{\partial \langle E \rangle}{\partial \lambda} \dot{\lambda} = \langle \dot{E} \rangle = \langle \dot{\mathcal{W}} \rangle - \langle \dot{\mathcal{Q}} \rangle = -k_B T \frac{\partial \ln V}{\partial \lambda} \dot{\lambda} + \frac{\omega_0}{Q} k_B (T - T_0)$$

S. Dago, L. Bellon, arXiv: 2105.12023 (2021)

<u>Click here to play</u> <u>video online</u>

S. Dago, L. Bellon, arXiv: 2105.12023 (2021)

Adiabatic limit

$$Q \gg 1 \longrightarrow \langle \dot{\mathcal{Q}} \rangle = -\frac{\omega_0}{Q} k_B (T - T_0) \sim 0$$

$$\left[k_B \ln Z + \frac{\langle E \rangle}{T}\right]_0^\tau = \Delta S = \int_0^\tau \frac{\langle \dot{Q} \rangle}{T} dt = 0$$

$$\langle E \rangle = k_B T + k_B T^2 \frac{\partial \ln V}{\partial T}$$

$$Z = \frac{2\pi}{\sqrt{km}} k_B T V$$

$$V = 1 + \operatorname{erf} \left(\sqrt{\frac{k\beta}{2}} \lambda \right)$$

$$TV = T_0 V_0$$

$$T(\tau) = 2T_0$$

$$\langle \mathcal{W} \rangle = \Delta \langle E \rangle = k_B T_0$$

Fast is hot, but not too hot !

$$Q \gg 1 \longrightarrow \langle \mathcal{W} \rangle = \langle \mathcal{Q} \rangle \sim k_B T_0$$
(delayed)

Underdamped stochastic thermodynamics

- Fast operation, high statistics
- Illustration of Landauer's bound
- $k_B T_0 \ln 2$ comes from compression
- Fast is hot
- Full energetics description
- Adiabatic limit: $\langle \mathcal{W} \rangle = \langle \mathcal{Q} \rangle = k_B T_0$

Thank you for your attention

Kiitos huomiostasi :-)

[according to Google translate]

To go further...

R. Landauer, *IBM Journal of Research and Development* **5**, 183 (1961) doi: <u>10.1147/rd.53.0183</u>

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, E. Dillenschneider, E. Lutz, *Nature* **483**, 187 (2012) doi: <u>10.1038/nature10872</u>

S. Dago, J. Pereda, N. Barros, S. Ciliberto, L. Bellon, *Phys. Rev. Lett.* **126**, 170601 (2021) doi: <u>10.1103/PhysRevLett.126.170601</u>

S. Dago, L. Bellon (2021) arXiv: <u>2105.12023</u> [cond-mat.stat-mech]

http://perso.ens-lyon.fr/ludovic.bellon

