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Statistical Mechanics/EQFT

Want to consider measures of the form
dv =exp(—5S(p))de

e dy is the Lebeque measure on some space of configuartions S’(A) and e.g A =79 R, T,

e S is an action, typically
S(w)Z/W(meQs@QHVSOPdSU

V() =cos(By), exp(Byp), ¢*

dw does not make sense if the configuartions space is infinite dimesional = use the quadratic
term of the action to pass to a gaussian measure.
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A= exp( —/m2902 + |V ]2d$> Gaussian Free Field

{> Gaussian measure with covariance (m?— A)~1.

> 1 probability measure supported on distributions of regularity —% — ¢ forany 6 >0

= Cannot define V() on the support on 1 in a straightforward fashion.



Wick ordering

Now consider d =2. Consider an approximation of p7 of 1 with covariance
T
e e e :/ i e B O
0

pr = 1for |z| < T compactly supported o; = , | =—p+

Then with ¢ = pp(D)¢

[¢%] = 6% — arp? + Br — [¢4] € Col(A)

and this limit exists ;4 almost surely. Similarly we can consider

[sin(B¢r)] = T%/*7sin(Ber) € Ciol /*™~°(A)

and this limit also exists almost surely. (Complex GMC).



Questions

{» Existence of measures in the continuum /infinite volume limit

{» Uniqueness, Decay of correlations, OS Axioms

{> Description of the measure in some sense

(> Pathwise properties

{» Large deviations in Semiclassical limt



Renormalization

> We are interested in an “effective theory”, i.e what we observe at “low” (finite) fregencies.

{» Consider functional f:S’(A) — R and

L(f)= lim [exp(—f(p))exp(=Vr(p))du(p)

T — o0

and assume that f(y)= f(Pyp) where Pr is a projector on frequencies <t.

{> Decompose 11 = ji; * fi;. 7 Where i; has covariance C; and 1 7 has covariance Cr — Cs.
[ exp(=1(@Dexp(=Va(@)dn(?)
= /exp(—f(gO))eXp(_V(80+ ¥))dpe()dpe, ()
= /exp(—f(SO))eXP(_Vt,T(SO))dNt(SO)

with

Vi r(p) = —log / exp(—V (i + ) dpse (%)



Polchinski equation

> Want to show that the limit 7" — oo exists if we keep ¢t < oo fixed.

{» Can derive a PDE for the effective potential.

Proposition 1. Assume that Vir € C*(L?*(IR?)). Then V; r satisfies

9, 1 ' ]!
@Vt,T(Sﬁ) i §T1’(Ct Hess V;,7()) — §\|JNV2,T(¢) |Z2(rz) =0

Vr () =Vr(p).

Furthermore if Vi € C%(L?(IR?)) then Vi 7 € C([0,T], C?*(L?(IR?))) N CL([0, T, C(L?(R?))).



Stochastic control

> Want to study

T
inf E[V(YT)+/ lS(YS,uS)dS]
ueH, 0

with H hilbert space (e.g R"), V:H—R, Ve C?(H) and : H x H— R,
dY; = B(s, us)ds + 05d X =0
0:H — H linear B:RxH—LR.

H, = {space of processes [0, T] — H adapted to X }.

Introduce the value function

Vt,T(@—E[V(Y%,T)+/Tls(n,s,us)ds]

t

where now

dY; s = B(s, us)ds + 0,d X Vorstip



Bellmann principle

Proposition 2. (Bellmann)

=

igflE[V(YT)Jr/O lS(YS,uS)ds]:igfIE][Vt,T(YT)+/O

G

(eiers us)dS]

Furthermore if u is a minimizer of the |.h.s, then U\[o,t] is @ minimizer of the r.h.s.

From this we can derive a PDE for V; 7 which looks like

0

Ev(t, ©) +%ai£;[Tr(02Hess O B e o =) (1)

Proposition 3. (Verification) Assume that v € C([0,T], C?1°¢(H)) N CY1°¢([0,T],C(H)) and
v solves (1) with v(T, @) = V(). Furthermore assume that there exists u € H, and Y such
that u, Y satisfy the state equation and

uy € argming e A Tr(o? Hess v (¢, Y;)) + (Vou(t, Y2), B(t, a)) g + (¢, Y;, a)]. (2)

Then v(t, ) =V, () and the pair u,Y is optimal.



Concrete situation

H = L?*(R?) and

o=

O't:Jt

it
i(t,Y;0) = §HGH%2(R2)'
Then (2) becomes a minimization problem for a quadratic functional and reduces to

Ut = —Jth(t, Ys’t).

This means if we can solve the equation
dYS,t:—J?Vv(t,Ys,t)dt%—Jtht, (3)

we can apply the verification theorem.



Concrete situation

Furthermore in this case (1) takes the form

9 1 1
= 0(t @) +5Tr(JiHess o(t, ) — 51TV o(t, 9) 22 me) =0, (4)

which is precisely the Polchinski equation.

Corollary 4.

T
_logE[e—VT(SD—f-Wt,T)] = inﬂfI E VT(YS,T(“’) QO)) +%/ HUtH%th]
uecld, S

where H,, is the space of processes adapted to X; such that E[f;o |ug|Z2dt] < 0o and Yi(u, ¢)
satisties

dYs,t(u, QO) = —J?Utdt + Jtht

Yols s =



Construct|on of <I>2 in finite volume

Take A = T2 and denote

4. a3
[T(U):/ Jtutdt WT:/ Jtht.
0 0
From previous slide we have with V() = [ [er]de

—log [ exp(~ (1) = Vi)
= E[A[[(WT+IT(U))4]]dx +%/OTHuH%2dt]

uweH,

From this we immidiatly see (can also be done by Jensen)

tog [ exp(— 1)~ V(o)) <E| s0) + [ 1093 = B7 02y

It is not hard do thow that

T e
HIT<u>HH1<( / HUHL2dt) .



Construct|on of <I>2 in finite volume

Expanding we have

D)

—=in

fWr 4+ Ir(u /[[WT+[T ))4]dz + / HuHdet]

e B / [WE] Ir(w)da + 4 / WL I2(w)dz + 6 / Wl (u)dz

e e
= IT(u)daz+§ |w|72dt
0

Now to get the corresponding lower bound to our upper bound we need

For example

E|red| < C + 0E|green].

E / (W] I () da

CENWA I -1(a) + Bl Ir(w) 71 (a)

<
< C+eB|Ir(w)||Fy ).

Similar for the other terms = Uniform upper and lower bounds on the Laplace tranform.



Infinite volume

Now partition function diverges so we have to consider
Hm WP(f) — WP(0)

]
where p € C°(R?)

WP(f)= inf E[f(WOOJrIOO(u)) +/,0VOO(WOO+[OO(u)) +l/000\|uty§2dt]

ueH, 2

= Have to study the optimizer on the r.h.s and control the depencede on f. E.g. want something
like

/ / exp(ye )l — u®?Pdedt.
0

where u/:” is the optimizer on the r.h.s. Then we can pass to the limit in

LmW*(f) —W*(0)

Py

and obtain an expression for the laplace transform. Proving decay of correlations is also possible.



Euler Lagrange equations

We can study the optimizer via it's EL equations. For h € H,

E[V f(Wos + Ioo(u? ?)) 1o (h))]
= E[/pVV(WOO+Ioo(uf’p))loo(h)da:]

+E[/ /u{’phtdxdt]
0

So taking difference

B R W=t Fe (il (B
= E[ / D(VV (Wis + Loo(uf 7)) = VV (Wao + Lo (u®?))) oo (h)dz

—HE)[/ / s S ol bt



Role of convexity

Imagine if V' was convex. Then testing with h = exp(v|z|)(u/? — u%*) we get

Elexp(7|2|)V f (Weo + Too(w/#)) oo (u?+# — u®P)]
= ]E[/pexp(ﬂx\)(VV(Woo+Ioo(uf’p))—VV(WOO+IOO(uO’p)))IOO(uf’p—uo’p)dx

+E[ | [es(rlal)ut 2 - up ot
0
If V is convex then

/pexp(vliv\)(VV(Woo +Ioo(u2#)) = VV (Woo + Ioo(u?))) oo (w! # — u®#)dz > 0

EM)OO/GXP(WI:B (] ?~ uf)dedt] <|Efexp(y[2 )V f (Woo + Too (u?#)) Loo(u? +# —u®#)]

and with a nice f the r.h.s is bounded by

E[ / / o et
0

1/2



Sine-Gordon

Now A =1R? and

Vr(¢) = )\T52/4”cos(ﬁ¢).

In this case we can obtain quite strong bounds on the minimizer.

Lemma 5. (Envelope theorem)

VV,r(p) =E[NVe(We, v+ It 7(u?®) + ¢)]

where u¥ minimizes

E[/pVT(W} 7+ I p(u®) 4+ )+ / HuSHdet]

= [|[VVi,rllLe <[[VVr L. So

[uf e = 1TV Ve, 2(Wa o + Ty (u®) + @) Lo <t T1TH/47



L*>° Bound

Now lets take

IVVe,7(0)llLes
= |E[VVZ (Wi, 1+ It 7(u?) + ¢)]|lLee

= HE[VVT(M,T"‘ QO) —|—/VVT(V[/;5,T—|— g0+9[t,T(u9"))It,T(u9")d9]

LOO

< HE[TBQ/“Sm(ﬁ(VVt,T+@))H!LOOHE[/HVVT(VVt,T+90+9It,T(U“"))ft,T(U“")HLood9
£ HE[t62/4ﬂSin(/BSO)]HLOO+t_1Tﬁ2/47T
< t62/47r_|_2t62/47r—1

Now can proceed inductivly to obtain

sup [| V'V, () [l S 7747,
@)
from this we get

lullee SE7/47~sup | VV; 1) s
©
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Recovering convexity

We can calculate by Ito’s formulate

/ [cos(BWa + Bl())]dz
= /OO/ [cos(BW; + BIi(u))] Jyurdxdt + martingale.
0
= /OO/Jt[[cos(ﬁVVt + BI(u))]urdz + martingale
0

This gives us that

A /0 & / T [oos( W4 Bl [t

is semiconvex in 1 and if \ is sufficiently small

o0 l O 22
A / / Tecos(8W; + BI(u))Jurde + 5 / Jul|Zdt

IS convex In 1.



Coupling

> We can obtain a coupling between the Free Field and the Sine Gordon measure. Set

VSG:%exp< / p[[COS(ﬁcb)]])du zo= | exp<— / p[[COS(&b)]])du

Proposition 6.

/ £(0)dvee = E[f (Woo + Lo(u?))]

One can show

SUP || Loo(u?)|Loo(p,02-5) <00
P

{Proof uses that

/f JdvEs = hm (log/exp(—sf(gp))dz/spg—log Zp)

{> Bauerschmidt-Hofstetter derive results on the maximum of the Sine-Gordon field.



Large Deviations

Want to study semiclassical limit of measures

usg,h—exp(—% | Jsin(BoN)— [ otm?- A>¢dx) —exp(—% I Qﬂsin(ﬁ(b)ﬂdx)uh

where the covariance of ;" is

A seqeunce of measures vy satisfies a large deviation principle with rate function L if

im o exp(—%f(cb))dw—igf{f((b) +I())

h—0

Proposition 7. If )\ is suffienclty small, vsc 1, satisfies a large deviations with rate functions

o [R cos(@o)da+ [ om?—A)gda.



Thank youl!



