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Want to consider measures of the form

d�= exp(−S('))d'

� d' is the Lebeque measure on some space of configuartions S 0(�) and e.g �="Zd;Rd;Td.

� S is an action, typically

S(')=
Z
�V (')+m2'2+ jr'j2dx

V (')= cos(�'); exp(�'); '4

d' does not make sense if the configuartions space is infinite dimesional) use the quadratic
term of the action to pass to a gaussian measure.
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d�= exp
�
−
Z
m2'2+ jr'j2dx

�
GaussianFree Field

} Gaussian measure with covariance (m2−�)−1.

} � probability measure supported on distributions of regularity −d− 2
2
− � for any � > 0

) Cannot define V (') on the support on � in a straightforward fashion.
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Now consider d=2. Consider an approximation of �T of � with covariance

CT = �T(D)(m2−�)−1=
Z
0

T

Jt
2dt Jt=(m2−�)−1/2�t(D)

�T =1 for jxj6T compactly supported �t=
d
dt
�t

r
Then with �T = �T(D)�

J�T4 K= �T
4 −�T�2+ �T! J�14 K2Cloc−�(�)

and this limit exists � almost surely. Similarly we can consider

Jsin(��T)K=T �
2/4�sin(��T)2Cloc

−�2/4�−�(�)

and this limit also exists almost surely. (Complex GMC).
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} Existence of measures in the continuum/infinite volume limit

} Uniqueness, Decay of correlations, OS Axioms

} Description of the measure in some sense

} Pathwise properties

} Large deviations in Semiclassical limt
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} We are interested in an �effective theory�, i.e what we observe at �low� (finite) freqencies.

} Consider functional f :S 0(�)!R and

L(f)= lim
T!1

Z
exp(−f('))exp(−VT('))d�(')

and assume that f(')= f(Pt') where PT is a projector on frequencies 6t.
} Decompose �= �t � �t;T where �t has covariance Ct and �t;T has covariance CT −Ct.Z

exp(−f('~))exp(−VT('~))d�('~)

=
Z

exp(−f('))exp(−V ('+  ))d�t(')d�t;T( )

=
Z

exp(−f('))exp(−Vt;T('))d�t(')

with

Vt;T(')=−log
Z

exp(−V ('+  ))d�t;T( )
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} Want to show that the limit T!1 exists if we keep t <1 fixed.

} Can derive a PDE for the effective potential.

Proposition 1. Assume that VT 2C2(L2(R2)). Then Vt;T satisfies

@
@t
Vt;T(')+

1
2
Tr(C_tHessVt;T('))−

1
2
kJtrVt;T(')kL2(R2)

2 =0

VT ;T(')=VT('):

Furthermore if VT 2C2(L2(R2)) then Vt;T 2C([0; T ]; C2(L2(R2)))\C1([0; T ]; C(L2(R2))).
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} Want to study

inf
u2Ha

E

�
V (YT)+

Z
0

T

ls(Ys; us)ds
�

with H hilbert space (e.g Rn), V :H!R, V 2C2(H) and l:H�H!R,

dYs= �(s; us)ds+�sdXs Y0=0:

�:H!H linear �:R�H!R:

Ha= fspace of processes [0; T ]!H adapted to Xg:

Introduce the value function

Vt;T(')=E

�
V (Yt;T)+

Z
t

T

ls(Yt;s; us)ds
�

where now

dYt;s= �(s; us)ds+�sdXs Yt= ':
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Proposition 2. (Bellmann)

inf
u

E

�
V (YT)+

Z
0

T

ls(Ys; us)ds
�
= inf

u
E

�
Vt;T(YT)+

Z
0

t

ls(Ys; us)ds
�

Furthermore if u is a minimizer of the l.h.s, then uj[0;t] is a minimizer of the r.h.s.

From this we can derive a PDE for Vt;T which looks like

@
@t
v(t; ')+ 1

2
inf
a2H

[Tr(�2Hess v(t; '))+ hrv; �(t; a)iH+ l(t; '; a)]= 0 (1)

Proposition 3. (Verification) Assume that v2C([0;T ];C2;loc(H))\C1;loc([0;T ];C(H)) and
v solves (1) with v(T ; ') = VT('). Furthermore assume that there exists u2Ha and Y such
that u; Y satisfy the state equation and

ut2 argmina2�[Tr(�2Hess v(t; Yt))+ hrv(t; Yt); �(t; a)iH+ l(t; Yt; a)]: (2)

Then v(t; ')=Vt;T(') and the pair u; Y is optimal.
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H=L2(R2) and

�(t; a) = Jta

�t = Jt

l(t; Yt; a) = 1
2
kakL2(R2)

2 :

Then (2) becomes a minimization problem for a quadratic functional and reduces to

ut=−Jtrv(t; Ys;t):

This means if we can solve the equation

dYs;t=−Jt2rv(t; Ys;t)dt+ JtdXt; (3)

we can apply the verification theorem.
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Furthermore in this case (1) takes the form

@
@t
v(t; ')+ 1

2
Tr(Jt2Hess v(t; '))−

1
2
kJtrv(t; ')kL2(R2)

2 =0; (4)

which is precisely the Polchinski equation.

Corollary 4.

−logE[e−VT('+Wt;T)] = inf
u2Ha

E

�
VT(Ys;T(u; '))+

1
2

Z
s

T

kutkL22 dt
�

where Ha is the space of processes adapted to Xt such that E[
R
0

1kutkL22 dt]<1 and Yt(u; ')
satisfies

dYs;t(u; ')=−Jt2utdt+ JtdXt

Ys;s(u; ')= ':
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Take �=T2 and denote

IT(u)=
Z
0

T

Jtutdt WT =
Z
0

T

JtdXt:

From previous slide we have with VT('T)=
R
J'TKdx

−log
Z

exp(−f(')−VT('))

= inf
u2Ha

E

�Z
�

J(WT + IT(u))4Kdx+ 1
2

Z
0

T

kukL22 dt
�

From this we immidiatly see (can also be done by Jensen)

−log
Z

exp(−f(')−VT('))6E

�
f(WT)+

Z
�

J(WT)4Kdx
�
=E[f(WT)]

It is not hard do thow that

kIT(u)kH16
�Z

0

T

kukL22 dt
�
1/2

:
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Expanding we have

E

�
f(WT + IT(u))+

Z
�

J(WT + IT(u))4Kdx+ 1
2

Z
0

T

kukL22 dt
�

= E

�
f(WT + IT(u))+

Z
�

JWT
3KIT(u)dx+4

Z
�

JWT
2KIT2(u)dx+6

Z
�

WTIT
3(u)dx

+
Z
IT
4(u)dx+ 1

2

Z
0

T

kukL22 dt
�

Now to get the corresponding lower bound to our upper bound we need

Ejredj6C + �E[green]:

For example

E

Z
�

JWT
3KIT(u)dx

6 CEkJWT
3KkH−1(�)2 + "EkIT(u)kH1(�)

2

6 C + "EkIT(u)kH1(�)
2 :

Similar for the other terms ) Uniform upper and lower bounds on the Laplace tranform.
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Now partition function diverges so we have to consider

lim
�!1

W�(f)−W�(0)

where �2Cc1(R2)

W�(f)= inf
u2Ha

E

�
f(W1+ I1(u))+

Z
�V1(W1+ I1(u))+

1
2

Z
0

1
kutkL22 dt

�
) Have to study the optimizer on the r.h.s and control the depencede on f . E.g. want something
like Z

0

1Z
exp(
 jxj)jut

f ;�−ut
0;�j2dxdt:

where uf ;� is the optimizer on the r.h.s. Then we can pass to the limit in

lim
�!1

W�(f)−W�(0)

and obtain an expression for the laplace transform. Proving decay of correlations is also possible.
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We can study the optimizer via it's EL equations. For h2Ha

E[rf(W1+ I1(uf ;�))I1(h)]

= E

�Z
�rV (W1+ I1(uf ;�))I1(h)dx

�
+E

�Z
0

1Z
ut
f ;�htdxdt

�
So taking difference

E[rf(W1+ I1(uf ;�))I1(h)]

= E

�Z
�(rV (W1+ I1(uf ;�))−rV (W1+ I1(u0;�)))I1(h)dx

�
+E

�Z
0

1Z
(ut
f ;�−ut

�)htdxdt
�
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Imagine if V was convex. Then testing with h= exp(
 jxj)(uf ;�−u0;�) we get

E[exp(
 jxj)rf(W1+ I1(uf ;�))I1(uf ;�−u0;�)]

= E

�Z
�exp(
 jxj)(rV (W1+ I1(uf ;�))−rV (W1+ I1(u0;�)))I1(uf ;�−u0;�)dx

�
+E

�Z
0

1Z
exp(
 jxj)(ut

f ;�−ut
�)2dxdt

�
If V is convex thenZ

�exp(
 jxj)(rV (W1+ I1(uf ;�))−rV (W1+ I1(u0;�)))I1(uf ;�−u0;�)dx> 0

so

E

�Z
0

1Z
exp(
 jxj)(ut

f ;�−ut
�)2dxdt

�
6 jE[exp(
 jxj)rf(W1+I1(uf ;�))I1(uf ;�−u0;�)]j

and with a nice f the r.h.s is bounded by

E

�Z
0

1Z
exp(
 jxj)(ut

f ;�−ut
�)2dxdt

�
1/2



Sine-Gordon 17/22

Now �=R2 and

VT(�)=�T �
2/4�cos(��):

In this case we can obtain quite strong bounds on the minimizer.

Lemma 5. (Envelope theorem)

rVt;T(')=E[rVT(Wt;T + It;T(u')+ ')]

where u' minimizes

E

�Z
�VT(Wt;T + It;T(u')+ ')+ 1

2

Z
t

T

kuskL22 dt
�
:

) krVt;T kL16 krVT kL1. So

kut
'kL1= kJtrVt;T(Wt;T + It;T(u')+ ')kL16 t−1T �

2/4�
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Now lets take

krVt;T(')kL1
= kE[rVT(Wt;T + It;T(u')+ ')]kL1

=








E�rVT(Wt;T + ')+

Z
rVT(Wt;T + '+ �It;T(u'))It;T(u')d�

�








L1

6 kE[T �2/4�sin(�(Wt;T + '))]kL1+E

�Z
krVT(Wt;T + '+ �It;T(u'))It;T(u')kL1d�

�
6 kE[t�2/4�sin(�')]kL1+ t−1T �

2/4�

6 t�
2/4�+2t�

2/4�−1

Now can proceed inductivly to obtain

sup
'

krVt;T(')kL1. t�
2/4�:

from this we get

kukL1. t�
2/4�−1sup

'

krVt;T(')kL1
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We can calculate by Ito's formulateZ
Jcos(�W1+ �I1(u))Kdx

=
Z
0

1Z
Jcos(�Wt+ �It(u))KJtutdxdt+martingale:

=
Z
0

1Z
JtJcos(�Wt+ �It(u))Kutdx+martingale

This gives us that

�

Z
0

1Z
JtJcos(�Wt+ �It(u))Kutdx

is semiconvex in u and if � is sufficiently small

�

Z
0

1Z
JtJcos(�Wt+ �It(u))Kutdx+ 1

2

Z
0

1
kukL22 dt

is convex in u.
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} We can obtain a coupling between the Free Field and the Sine Gordon measure. Set

�SG= 1
Z�exp

�
−
Z
�Jcos(��)K

�
d� Z�=

Z
exp

�
−
Z
�Jcos(��)K

�
d�

Proposition 6. Z
f(')d�SG

� =E[f(W1+ I1(u�))]

One can show

sup
�

kI1(u�)kL1(P;C2−�)<1

}Proof uses thatZ
f(')d�SG

� = lim
s!0

1
s

�
log

Z
exp(−sf('))d�SG

� − logZ�

�
} Bauerschmidt-Hofstetter derive results on the maximum of the Sine-Gordon field.



Large Deviations 21/22

Want to study semiclassical limit of measures

�SG;~= exp
�
−�~

Z
R2
Jsin(��)K− 1

~

Z
R2
�(m2−�)�dx

�
= exp

�
−�~

Z
R2
Jsin(��)Kdx

�
�~

where the covariance of �~ is

~(m2−�)−1:

A seqeunce of measures �~ satisfies a large deviation principle with rate function L if

lim
~!0

− ~log
Z

exp
�
−1~f(�)

�
d�~= inf

�
ff(�)+L(�)g

Proposition 7. If � is suffienclty small, �SG;~ satisfies a large deviations with rate functions

L(')=�
Z
R2
cos(��)dx+

Z
R2
�(m2−�)�dx:
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Thank you!


