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Set-up 1/16

Notation
We let µ denote a singular cardinal and κ = cf(µ).

We let ⟨µξ | ξ ∈ κ⟩ denote a continuous strictly increasing
sequence cofinal in µ.



Topology
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Given a space of functions δρ and a (partial) function
s : D → ρ with D ⊆ δ, we write [s] =

{
f ∈ δρ | s ⊆ f

}
.

Let ν be a cardinal, then the <ν-box topology on δρ is the
topology generated by basic clopens [s] such that s : D → ρ

has |D| < ν.

The bounded topology on δρ is the topology generated by
basic clopens [s] such that s : D → ρ and D is bounded in δ.

We will discuss the <κ-box, bounded, and <µ-box topology,
abbreviated as “κ”, “bd”, and “µ”, e.g. in subscripts.
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There are several closely related sets of functions that serve
as generalisation of the classical Baire (and Cantor) space:

1. µµ

2. µ2

3. µκ

4. κµ

5.
∏

ξ∈κ µξ = K

Each of these sets of functions may be given the <κ-box
topology, the <µ-box topology or the bounded topology.
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Definition
Let (X, τ) be a topological space. A local basis for x ∈ X is a
set B ⊆ τ such that x ∈ V for all V ∈ B and each U ∈ τ with
x ∈ U has V ∈ B with V ⊆ U .
(X, τ) has character ν if all x ∈ X have a local basis of
cardinality (at most) ν.
(X, τ) has pseudocharacter ν if each singleton {x} with x ∈ X

is the intersection of (at most) ν-many open sets.
(X, τ) is discrete if {x} is open for each x ∈ X .

Note: character, pseudocharacter and discreteness are
topological invariants.
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µκ; bdµ2; bd

κµ; κ

κµ; bd

K; κ

K; bd

µµ; bd

κµ; µ K; µ

µ2; µ µκ; µ µµ; µ

µ2; κ µκ; κ µµ; κ

Character κ &
Pseudocharacter κ Discrete

Character >µ &
Pseudocharacter κ

Pseudocharacter µ

(next slide)

2<µ = µ<κ2<µ = µ<κ

µ<µ = µ<κ2<µ = µ<µ

µ<µ = µ<κµ<µ = µ<κ
?

?
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A space (X, τ) is <κ-compact if every open cover of X has a
subcover of size <κ. The cardinal κ is weakly compact if and
only if κ2 with the <κ-box topology is <κ-compact. The
cardinal κ is strongly compact if and only if θ2 with the
<κ-box topology is <κ-compact for every θ.

Theorem
If κ is strongly compact, then (µ2, κ) and (µκ, κ) are not
homeomorphic.

Theorem
If κ is not weakly compact, then (µ2, κ) and (µκ, κ) are
homeomorphic.



At Most 8 Spaces! 7/16

µκ; bdµ2; bd

κµ; κ

κµ; bd

K; κ

K; bd

µµ; bd

κµ; µ K; µ

µ2; µ µκ; µ µµ; µ

µ2; κ µκ; κ µµ; κ

Character κ &
Pseudocharacter κ Discrete

Character >µ &
Pseudocharacter κ

Pseudocharacter µ

?

?

µ2; bd

κµ; bd

µµ; bd

µ2; µ µµ; µ

µ2; κ µκ; κ µµ; κ



Meagre Sets
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A subset A of a topological space is nowhere dense (nwd) if
every nonempty open contains a nonempty open disjoint
from A. For ν a cardinal, a subset of a topological space is
ν-meagre if it is the union of ν-many nwd sets.

For each of our 8 spaces, every ν-meagre set is nwd if ν < κ.
Moreover, some κ-meagre set is not nwd. Finally, at least 6 of
our spaces are κ+-meagre in themselves (so, cov(MX

τ ) = κ+).

Notation
For a space (X, τ), we write MX

τ for the κ-meagre ideal of X .
E.g.: M

κµ
bd , M

µµ
κ , etc.
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For a space (X, τ), we may consider the forcing CX
τ consisting

of nonempty open sets ordered by inclusion. For instance,
Cωω
product is just Cohen forcing.

Lemma Cf. Landver 1992, Lemma 1.3

If CX
τ collapses κ+, then cov(MX

τ ) = κ+.

Proof. Let ḟ name an injection from (κ+)V to κ and for each
α ∈ κ+ let Dα be the set of conditions deciding ḟ(α). Then
X \

⋃
Dα is nwd in X , and {X \

⋃
Dα | α ∈ κ+} covers X :

otherwise there would be p ∈
⋂

α∈κ+ Dα, which is absurd.

Theorem
κ+ = cov(M

κµ
bd) = cov(M

µµ
bd) = cov(Mµ2

bd)

= cov(M
µµ
µ ) = cov(Mµ2

µ ) = cov(M
µµ
κ ).
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Note that Cµ2
κ is forcing equivalent to the κ-support product

of κ-Cohen forcing Cκ2
κ of length µ. Hence, Landver’s Lemma is

not usable to determine whether cov(Mµ2
κ ) = κ+.

Theorem
κ+ ≤ cov(Mµ2

κ ) ≤ cov(Mκ2
κ ).

Conjecture
cov(Mµ2

κ ) = cov(Mκ2
κ ).

A similar situation occurs for Mµκ
κ .



Domination
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Given f, g ∈ δρ and a cardinal ν (either κ or µ in our case), we
define the following orders.

Let f ≤ν g if | {α ∈ δ | f(α) > g(α)} | < ν.
Let f ≤bd g if {α ∈ δ | f(α) > g(α)} ⊆ β for some β < δ.
Let f ≤all g if f(α) ≤ g(α) for all α ∈ δ.

Let b
δρ
(·) be the least size of a ≤(·)-unbounded subset of δρ and

let d
δρ
(·) be the least size of a ≤(·)-dominating subset of δρ.

Proposition
Assuming δρ itself is ≤(·)-unbounded, b

δρ
(·) ≤ d

δρ
(·).

b
δρ
all ≤ b

δρ
κ ≤ b

δρ
bd ≤ b

δρ
µ and d

δρ
µ ≤ d

δρ
bd ≤ d

δρ
κ ≤ d

δρ
all.

If τ is a cofinal subset of ρ, then b
δρ
(·) = b

δτ
(·) and d

δρ
(·) = d

δτ
(·).
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Domination on κµ is equivalent to domination on κκ; and
domination on µµ is equivalent to domination on µκ.

Theorem Folklore; as in classical case; Brendle 2022; Hayashi’s thesis

κ κ+b
κκ
all b

κκ
bd b

κκ
κ d

κκ
bd d

κκ
κ d

κκ
all

b
µκ
all b

µκ
κ b

µκ
bd b

µκ
µ d

µκ
µ d

µκ
bd d

µκ
κ d

µκ
all

2κ

2µ

Question
Is d

µκ
µ < d

µκ
κ consistent?
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Domination on κµ is equivalent to domination on κκ; and
domination on µµ is equivalent to domination on µκ.

Theorem Folklore; as in classical case; Brendle 2022; Hayashi’s thesis

κ κ+b
κκ
all b

κκ
bd b

κκ
κ d

κκ
bd d

κκ
κ d

κκ
all

b
µκ
all b

µκ
κ b

µκ
bd b

µκ
µ d

µκ
µ d

µκ
bd d

µκ
κ d

µκ
all

2κ

2µ

Theorem Shelah 2019

If λκ < µ for all λ < µ, then d
µκ
µ = 2µ.

Theorem Folklore? Hayashi 2025, § 5

If κ is uncountable, then d
µκ
κ < 2µ is consistent.

Theorem Hayashi 2025, § 5

cof([µ]κ,⊆) ≤ d
µκ
µ .



More About M
κµ
bd
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Theorem Folklore; as in the classical case

bκ = b
κµ
bd ≤ non(M

κµ
bd) ≤ cof(M

κµ
bd).

Theorem Hayashi and vdV.

µ<κ ≤ non(M
κµ
bd) and cof([µ]κ,⊆) ≤ non(M

κµ
bd).

Proof. Let X ⊆ κµ with |X| < µ<κ and s ∈ µ<κ. Then there is
some t ∈ µ<κ extending s with [t] ∩X = ∅.

Let X ⊆ κµ with |X| < cof([µ]κ,⊆). Then there is y ∈ [µ]κ with
∀f ∈ X(y ⊈ ran(f)), so X ⊆

⋃
α∈y {f ∈ µκ | α /∈ ran(f)}.

Question
Is non(M

κµ
bd) < µκ consistent?
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Theorem Brendle 2022

If κ̃ is regular uncountable and λ̃ = 2<κ̃, then d
λ̃κ̃
bd ≤ cof(Mκ̃κ̃

bd).

N.B.: Since λ̃+ ≤ d
λ̃κ̃
bd, it follows that 2κ̃ < cof(Mκ̃κ̃

bd) is
consistent, e.g. when 2κ̃ = 2<κ̃.

Theorem Hayashi and vdV.

Let λ = µ<κ, then d
λκ
bd ≤ cof(M

κµ
bd).

Corollary
λ+ ≤ cof(M

κµ
bd) and dκ = d

κµ
bd ≤ cof(M

κµ
bd) and it is consistent

that µκ < cof(M
κµ
bd).

Theorem Hayashi and vdV.

If 2κ < µκ, then µκ ≤ cof(M
κµ
bd).

We don’t know if the assumption “2κ < µκ” is necessary here.



Summary for (κµ, bd) 15/16

Let λ = µ<κ.

cov(M
κµ
bd )κ+ = add(M

κµ
bd ) =

non(M
κµ
bd )

cof(M
κµ
bd )

bκ dκ

cof([µ]κ,⊆)

λ µκ

λ+ d
λκ
bd



What’s Next? 16/16

Apart from the mentioned questions;

What about non(MX
τ ) & cof(MX

τ ) for the 7 other (X, τ)?
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