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Very general dichotomies have emerged for graphs and hypergraphs which
imply several old and new theorems in descriptive set theory.

General Aims:
Versions of these dichotomies for generalized Baire spaces.

Lift known applications to the uncountable setting.

New applications.

Carroy, Miller and Soukup (2020) found a generalization of Feng’s open graph
dichotomy to infinite dimensional directed hypergraphs on analytic sets of
reals, which we have lifted to definable subsets of generalized Baire spaces.
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The setup:

κ always denotes an infinite cardinal with κ<κ = κ.
κd always has the bounded topology τb for any discrete topological space d,
with basic open sets Nt := {x ∈ κd : t ⊆ x}, where t ∈ <κd.

A d-dihypergraph on a set X ⊆ κκ is a set of nonconstant sequences in dX .

Fix the box topology on dX with basic open sets
∏

i∈d Ui, where each Ui is
open in X .

The open graph dichotomy:

OGDκ(X) states that for any open graph G on X , either

G admits a κ-coloring (i.e., X is the union of κ many G-independent sets),

or G has a κ-perfect complete subgraph (i.e., there is a continuous

embedding f : κ2 → X of the complete graph Kκ2 into G.)
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The open dihypergraph dichotomy

ODDd
κ(X): For all box-open d-dihypergraphs H on X , either H

admits a κ-coloring, or there is a continuous homomorphism
f : κd → X from Hκd :=

⋃
t∈<κd

∏
i∈d Nt⌢⟨i⟩ to H .

ODDd
κ(X,Defκ) denotes the restriction to definable box-open

dihypergraphs.

By “definable”, we always mean “definable from a κ-sequence of
ordinals”.

Theorem (Schlicht, Sz, 2023)

After a Lévy collapse of λ to κ+, the following hold for all definable subsets X of κκ:

ODDκ
κ(X) if λ is Mahlo.

ODDκ
κ(X,Defκ) if λ is inaccessible.
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Some Applications

Let X ⊆ κκ. ODDκ
κ(X) implies each of the following:1

Versions of the Hurewicz dichotomy:
either X is covered by κ-many κ-compact sets, or X contains a closed
subset of κκ which is homeomorphic to κκ.
Either X ⊆

⋃
α<κ[Tα] for <κ-splitting trees Tα or X contains a

superperfect subset.

The Kechris-Louveau-Woodin dichotomy characterizing when X can
be separated from Y ⊆ κκ \ {X} by a Σ0

2(κ) set.

The determinacy of Väänänen’s perfect set game of length κ for all
subsets of κκ.

The asymmetric κ-Baire property.

The Jayne-Rogers theorem any f : X → κκ is∆0
2(κ)-measurable if and

only if it is a union of κ many continuous functions on relatively closed

subsets of X .
1The first two and last one were obtained for κ = ω by Carroy-Miller-Soukup (2020). For

κ > ω, all of these were obtained by Schlicht and I (2023).
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The Closed-Sets Covering Property

F always denotes a family of closed subsets of κκ. IF is the κ-ideal generated by F
(i.e., the closure of F under taking unions of size κ and subsets).

Definition. Suppose X ⊆ κκ, C is a class.

CCPC
κ(X): For any family F of closed subsets of κκ, either X ∈ IF or

X has an IF -positive subset Y ∈ C.

Theorem (Louveau)

CCP
Σ1

1
ω (X) holds for all subsets of ωω in Solovay’s model.

Theorem (Solecki)

CCP
Π0

2
ω (X) holds for all analytic subsets of ωω.

By Solecki’s result, CCPΣ1
1

ω (X) ⇐⇒ CCP
Π0

2
ω (X) for all X ⊆ ωω.
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The Closed-Sets Covering Property

Definition. Suppose X ⊆ κκ.

CCPκ(X): For any family F of closed subsets of κκ, either X ∈ IF or
there is a continuous function f : κκ → X with f(Nt) ∈ I+

F for all t ∈ <κκ.

CCPκ(X,Defκ) is the restriction to definable families F of closed sets.

Theorem
For any X ⊆ κκ:

CCPκ(X) ⇐⇒ ODDκ
κ(X).

CCPκ(X,Defκ) ⇐⇒ ODDκ
κ(X,Defκ).

Hence CCPκ(X) holds for all definable setsX after a Lévy-collapse of a Mahlo car-

dinal to κ+, and an inaccessible suffices for CCPκ(X,Defκ).
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Form CCP to ODD

Proof sketch.

Suppose H is a box-open κ-dihypergraph on X . Let F be the family of all
closed H-independent subsets of κκ.

Y ∈ IF ⇐⇒ H↾Y has a κ-coloring, for all Y ⊆ X .

Lemma
The existence of the following objects is equivalent:

a continuous homomorphism from Hκκ to H ,

a continuous map f : κκ → X with f(Nt) /∈ IF for all t ∈ <κκ.

Hence CCPF
κ (X) ⇐⇒ ODDH↾X

κ .
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Proof of the Lemma.

⇓: Suppose f : κκ → X is a continuous homomorphism from Hκκ to X .

Claim. f(Nt) ∈ I+
F for all t ∈ <κκ.

Proof. Suppose f(Nt) ⊆
⋃

α<κ Xα where each Xα ∈ F . Construct a continuous
increasing sequence ⟨tα : α < κ⟩ such that t0 = t and for each α < κ,

tα+1 is an immediate successor of tα
f(Ntα+1

) ∩Xα = ∅.

This is possible since otherwise, there exists xi in f(Ntα⌢⟨i⟩) ∩Xα for each i < κ.
Since f is a homomorphism, ⟨xi : i < κ⟩ ∈ H↾Xα. So Xα /∈ F .

⇑: Suppose f : κκ → X is continuous with f(Nt) ∈ I+
F for all t ∈ <κκ. Construct

continuous strict order preserving maps ϕ, ι : <κκ → <κκ such that for all t ∈ <κκ,∏
i<κ Nϕ(t⌢⟨i⟩) ∩X ⊆ H ,

f(Nι(t)) ⊆ Nϕ(t).

Then [ϕ] = f ◦ [ι] will be a continuous homomorphism from Hκd to H .
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Form ODD to CCP

Let F be a family of closed subsets of κκ. We may assume IF ∩Π0
1 = F .

Let H consist of all κ-sequences ⟨xα : α < κ⟩ ∈ κκ with {xα : α < κ} /∈ F .

Lemma
A closed subset C of κκ is H-independent if and only if C ∈ F .

Proof. ⇒: Take a κ-sequence ⟨xα : α < κ⟩ ∈ κκ whose range is dense in C . Then
C = {xα : α < κ} is not in F , so it is IF -positive.
⇐: IfH↾C has a hyperedge ⟨xα : α < κ⟩ ∈ κκ then C /∈ F since C is a superset of

the IF -positive set {xα : α < κ}.

Hence CCPF
κ (X) ⇐⇒ ODDH↾X

κ by the previous slide.
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It’s all the same in the countable setting

Lemma

CCPω(X) ⇐⇒ CCP
Σ1

1
ω (X) for all X ⊆ ωω.

Proof.

It suffices to show CCPω(Σ
1
1). Let X be an IF -positive analytic set, and let

f : ωω → X be a continuous surjection. For all t ∈ <ωω, take an infinite
maximal antichain At of nodes u in <ωω with t ⊆ u and f(Nu) ∈ I+

F .

Construct a strict order preserving map ϕ : <ωω → <ωω such that
⟨ϕ(t⌢⟨i⟩) : i < ω⟩ enumerates Aϕ(t) without repetitions for each t ∈ <ωω.

[ϕ](x) :=
⋃

t⊊x ϕ(t) for all x ∈ ωω. Then g := f ◦ [ϕ] is a continuous map
from ωω to X with g(Nt) ∈ I+

F for all t ∈ <ωω.
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Example: the κ-perfect set property

Let CCPκ(X,F) and CCPC
κ(X,F) denote the versions for a single family F

of closed sets.

If F is the family of singletons, CCPκ(X,F) is equivalent to the κ-perfect
set property.

If V = L, then

PSPκ(Σ
1
1) fails for all κ = κ<κ > ω (Friedman, Hyttinen, Kulikov).

PSPκ(Cκ) fails for κ = ω2 and the class Cκ of continuous images of κκ
(Lücke, Schlicht).

So CCPκ(X) does not follow from either CCPΣ1
1

κ (X) or CCPCκ
κ (X).
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Example: the asymmetric κ-Baire property

X ⊆ κκ has the κ-Baire property if there is an open set U ⊆ κκ such that
X△U is κ-meager (i.e. the union of κ-many nowhere dense sets).

Theorem (Halko, Shelah)

The κ-Baire property holds for κ-Borel sets, but it fails for κ-analytic sets (for
the club filter) when κ > ω.

Definition (Schlicht). X has the asymmetric κ-Baire property if the the
Banach-Mazur game of length κ for X is determined.

In this game, players I and II play a strictly increasing sequence ⟨sα : α < κ⟩ in
<κκ. I plays in all even rounds (including limit rounds). I wins if

⋃
α<κ sα ∈ X .
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Example: the asymmetric κ-Baire property

Proposition

If F is the family of nowhere dense sets, then

CCPκ(X,F) is equivalent to the asymmetric κ-Baire property.

CCPBorelκ
κ (X,F) implies the κ-Baire property.

So CCPκ(X) does not imply CCP
Π0

2
κ (X) or even CCPBorelκ

κ (X).
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The Transitive Closed Hypergraph Dichotomy

Kd
X := dX \ {constant sequences} is the complete d-hypergraph on X .

H is box-closed if its complement Hc := Kd
X \H is box-open.

A d-hypergraph H is a d-dihypergraph which is closed under permutations of
hyperedges (i.e. ⟨xπ(i) : i < d⟩ ∈ H for all π ∈ Sym(d) and ⟨xi : i < d⟩ ∈ H).

H is transitive if all of its vertical sections
H⟨x1,...xi,... ⟩ := {x ∈ X : ⟨x, x1, . . . xi, . . . ⟩ ∈ H} are H-cliques.

H is weakly transitive if all of its vertical sections are unions of κ-many
H-cliques.

TCHDd
κ(X) states that for any box-closed weakly transitive d-hypergraph

H on X , either

X is a union of κ-many H-cliques,

or there exists a κ-perfect H-independent set.
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The Transitive Closed Hypergraph Dichotomy

Theorem (He)

TCHDd
ω(X) holds for all analytic subsets X of ωω and all d < ω.

Theorem
Let d < κ. Suppose ♢κ or κ is inaccessible or κ = ω. For any X ⊆ κκ:

Let d < κ. Suppose ♢i
κ,d. For any X ⊆ κκ:

ODDd
κ(X) =⇒ TCHDd

κ(X),

ODDd
κ(X,Defκ) =⇒ TCHDd

κ(X,Defκ).

Hence TCHDd
κ(X) holds for all definable sets X after a Lévy-collapse of a Mahlo

cardinal to κ+, and an inaccessible suffices for the restriction TCHDd
κ(X,Defκ) to

definable dihypergraphs.

♢i
κ,d: There exists a sequence ⟨Aα ⊆ αd : α < κ⟩ such that |Aα| < κ for all α < κ

and {α < κ : x↾α ∈ Aα} is cofinal in κ for all x ∈ κd.
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From ODD to TCHD

Proof (for inaccessible cardinals and ω).

Suppose H is a box-closed weakly transitive d-hypergraph on X .

ByODDd
κ(X), we can assume there exists a continuous homomorphism f fromHκd

to Hc. Construct a continuous order preserving map ϕ : <κd → <κκ with∏
i<d Nϕ(ti) ⊆ Hc for all α < κ and all non-constant sequences ⟨ti : i < d⟩ in αd.

At successor stages, use box-openness and the following lemma repeatedly.

Lemma. Hc is a dense subset of d(ran(f)).

Proof. LetUi be an open subset of ran(f) for all i < d. Take anyx = ⟨x1, . . . , xi, . . . ⟩
in

∏
1≤i<d Ui. It suffices to show Hc

x ∩ U0 ̸= ∅. Otherwise U0 ⊆ Hx and hence
Hc↾U0 is κ-colorable by weak transitivity. But such a coloring can be pulled back to
a κ-coloring of Hκd, which cannot exist.

The set of all [ϕ(x)] :=
⋃

α<κ ϕ(x↾α), where x ∈ αd, forms a κ-perfect

H-independent set.
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From ODD to TCHD

Proof (from ♢i
κ,d).

♢i
κ,d is equivalent to the following d-dimensional version:

There exists a sequence ⟨Bα ⊆ Kd
αd : α < κ⟩ such that

|Bα| < κ for all α < κ,

for all ⟨x0, . . . , xi, . . . ⟩ ∈ Kd
κd the set {α < κ : ⟨x0↾α, . . . , xi↾α, . . . ⟩ ∈ Aα}

is cofinal in κ.

Construct a continuous order preservingmapϕ : <κd → <κκwith
∏

i<d Nϕ(ti) ⊆ Hc

for all α < κ and all ⟨ti : i < d⟩ ∈ Bα.
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Aims:

Characterize ODD via games of length κ.

Determinacy of very general classes of games of length κ.
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Feng’s games

Feng characterized the open graph dichotomy for sets of reals via a game of
length ω. We lift this for <κ-dimensional dihypergraphs on κκ.
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Feng’s games

Suppose H is a box-open d-dihypergraph on κκ, where 2 ≤ d ≤ κ, and X ⊆ κκ.

Fκ(X,H) is the following game of length κ:

I ⟨t0i : i < d⟩ . . . ⟨tαi : i < d⟩ . . .

II i0 . . . iα . . .

where tαi ∈ <κκ,
∏

i<dNtαi
⊆ H , iα < d and tβiβ ⊆ tαi for all β < α, i < d.

I wins if
⋃

α<κ t
α
iα

∈ X .

ODDI
κ denotes the restriction of ODDd

κ(X) to a single d-dihypergraph I on X .

Theorem

ODDH↾X
κ =⇒ Fκ(X,H) is determined.

If d < κ, then ODDH↾X
κ ⇐⇒ Fκ(X,H) is determined.
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Feng’s games and ODDd
κ

Proof sketch. Winning strategies for I correspond in a straightforward way to
continuous homomorphisms from Hκκ to H↾X .

If H↾X has a κ-coloring X :=
⋃

α<κ Xα, then II wins by making sure that the αth

color is avoided in round α (i.e., Ntαiα
∩Xα = ∅).

Now, suppose σ is a winning strategy for II. Let Runσ denote the set of those
positions p := ⟨tα, rα : α ≤ β⟩ which follow σ.

A position p ∈ Runσ is good for x ∈ X if
⋃

α<β t
α
iα

⊆ x.

Xp := {x ∈ X : p is maximal good for x}.

Claim. X =
⋃

p∈Runσ
Xp and each Xp is H-independent.

If d < κ, then |Runσ| = κ, so H↾X has a κ-coloring.
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ODDκ
κ via games

Carroy-Miller-Soukup characterized ODDω
ω(X) for subsets X of ωω via a slowed

down version of Feng’s games. We lift this to the uncountable setting.

Suppose H is a κ-dihypergraph on κκ and X ⊆ κκ.

Gκ(X,H) is the following game of length κ:

I t0 t1 . . . tα . . .

II i0 i1 . . . iα . . .

where tα ∈ <κκ, iα < 2, and tβ ⊆ tα for all β < α with iβ = 1.

Let suppκ := {α < κ : iα = 1}.
If |suppκ| = κ, then I wins if x :=

⋃
α∈suppκ tα is in X

If |suppκ| < κ, then I wins if
∏

α<κNtm+α ⊆ H where m is the least
ordinal with iβ = 0 for all β ≥ m.

Dorottya Sziráki Open Hypergraphs, Covering with Closed Sets and Games 23 / 29



ODDκ
κ via games

Theorem. For all box-open κ-dihypergraphs H on κκ and all X ⊆ κκ,

ODDH↾X
κ ⇐⇒ Gκ(X,H) is determined.

Proof idea. Let π(x) :=
⊕

α<κ⟨0⟩x(α)⌢⟨1⟩ for all x ∈ κκ. Let Hπ := πd(Hκκ).

Winning strategies for I correspond to continuous homomorphisms from Hπ to

H↾X . The proof for II uses a similar idea as the previous proof.
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Kechris’s games

Kechris introduced a general class of games of length ω which encompasses
many of the classical games characterizing dichotomies for subsets of ωω.
We consider the versions of length κ for subsets of the κ-Baire space.
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Kechris’s games

Let upw(<κd) denote the set of upwards closed subsets of <κd. Let X ⊆ κd.

Let R be a nonempty set (requirements) and F : R → upw(<κd).
Kκ(X,F ) is the following game of length κ:

I t0 t1 . . . tα . . .

II r0 r1 . . . rα . . .

where tα ∈ <κd and rα ∈ R. I wins if
⊕

α<κ tα ∈ X and tα+1 ∈ F (rα)

for all α < κ.

Example

d := 2, R := 2 and F (r) := {t ∈ <κ2 : t(0) = r} characterizes the
κ-perfect set property.
d := κ, R := <κκ and F (r) := {t ∈ <κκ : r ⊆ t} is the Banach-Mazur
game (for the assymmetric κ-Baire property).
d := κ, R := κ and F (r) := {t ∈ <κκ | t(0) ≥ r} characterizes a
variant of the Hurewicz dichotomy.

Theorem

ODDκ
κ(X,Defκ) implies that Kκ(X,F ) is determined for all nonempty sets R

of size ≤ κ and all nontrivial F : R → upw(<κd).

F is nontrivial if for all i ∈ d, there exists r ∈ R such that t(0) ̸= i for all t ∈ F (r).
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Generalizing Kechris’s and Feng’s games

SupposeR ⊆ P(κ),F is a functionwith domainR×<κκwithF (r, t) ∈ upw(r(<κκ))
for all r, t. Fκ(X,F ) is the following game of length κ:

I t0 ⟨t1i : i ∈ r0⟩ . . . tω ⟨tω+1
i : i ∈ rω⟩ . . .

II r0 i1, r1 . . . rω iω+1, rω+1 . . .

In successor rounds α+ 1, I plays tα+1
i ∈ <κκ for all i ∈ rα which extend tβ := tβiβ

for all successor ordinals β ≤ α, so that ⟨tα+1
i : i < rα⟩ ∈ F (rα,

⊕
β<α tβ).

II plays iα+1 < rα and rα+1 ∈ R. In round 0 and limit rounds, I plays tα ∈ <κκ

extending tβ for all β < α and II plays rα ∈ R.

I wins if
⊕

α<κ tα ∈ X .

Example

To obtain Kechris’s game for F ′ : κ → upw(<κκ), let R := {{α} : α < κ},
F ({α}, t) := F ′(α) for all t ∈ <κκ

To obtain Feng’s game for a d-dihypergraph H , let R := {d} and
F (d, t) := {⟨ti : i < d⟩ :

∏
i<d Nt⌢ti ⊆ H}.

Theorem (?). Suppose R consists of pairwise disjoint subsets. Then

ODDκ
κ(X) =⇒ Fκ(X,F ) is determined.
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Generalizing Kechris’s and the CMS games

Suppose s /∈ κ, R ⊆ P(κ) and F is a function with domain R× <κκ with
F (r, t) ∈ upw(r(<κκ)) for all r, t. Gκ(X,F ) is the following game of length κ:

I t0 t1 . . . tα . . .

II r0 r1 . . . rα . . .

where tα ∈ <κκ and rα ∈ R ∪ {s}. II has to play rα ∈ R if the order type of
suppα := {β < α : iβ ∈ R} is a limit ordinal.

If |suppκ| = κ, then I wins if x :=
⊕

α∈suppκ
tα is in X

If |suppκ| < κ, then I wins if ⟨tm+α : α ∈ rm⟩ ∈ F (rm−1, tm−1) where m is
the least ordinal with rβ = s for all β ≥ m.

Example

To obtain Kechris’s game for F ′ : κ → upw(<κκ), let R := {{α} : α < κ},
F ({α}, t) := F ′(α) for all t ∈ <κκ

To obtain the Carroy-Miller-Soukup game for a d-dihypergraph H , let
R := {d} and F (d, t) := {⟨ti : i < d⟩ :

∏
i<d Nt⌢ti ⊆ H}.

Conjecture. Suppose R consists of pairwise disjoint subsets. Then

ODDκ
κ(X) =⇒ Gκ(X,F ) is determined.
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Thank you!
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