Open Hypergraphs, Covering with Closed Sets and Games

Dorottya Sziráki Joint work in progress with Philipp Schlicht

8th Workshop on Generalized Baire Spaces Helsinki, 22 August 2025 Very general dichotomies have emerged for graphs and hypergraphs which imply several old and new theorems in descriptive set theory.

General Aims:

- Versions of these dichotomies for generalized Baire spaces.
- Lift known applications to the uncountable setting.
- New applications.

Carroy, Miller and Soukup (2020) found a generalization of Feng's open graph dichotomy to infinite dimensional directed hypergraphs on analytic sets of reals, which we have lifted to definable subsets of generalized Baire spaces.

The setup:

 κ always denotes an infinite cardinal with $\kappa^{<\kappa}=\kappa$.

 ${}^{\kappa}d$ always has the bounded topology τ_b for any discrete topological space d, with basic open sets $N_t:=\{x\in {}^{\kappa}d:t\subseteq x\}$, where $t\in {}^{<\kappa}d$.

A d-dihypergraph on a set $X\subseteq {}^\kappa \kappa$ is a set of nonconstant sequences in ${}^d X$. Fix the box topology on ${}^d X$ with basic open sets $\prod_{i\in d} U_i$, where each U_i is open in X.

The setup:

 κ always denotes an infinite cardinal with $\kappa^{<\kappa}=\kappa.$

 $^\kappa d$ always has the bounded topology τ_b for any discrete topological space d, with basic open sets $N_t:=\{x\in {}^\kappa d:t\subseteq x\}$, where $t\in {}^{<\kappa}d$.

A d-dihypergraph on a set $X \subseteq {}^{\kappa}\kappa$ is a set of nonconstant sequences in dX . Fix the box topology on dX with basic open sets $\prod_{i \in d} U_i$, where each U_i is open in X.

The open graph dichotomy:

 $OGD_{\kappa}(X)$ states that for any open graph G on X, either

- G admits a κ -coloring (i.e., X is the union of κ many G-independent sets),
- or G has a κ -perfect complete subgraph (i.e., there is a continuous embedding $f: {}^{\kappa}2 \to X$ of the complete graph $\mathbb{K}_{{}^{\kappa}2}$ into G.)

The open dihypergraph dichotomy

 $\begin{array}{l} \operatorname{ODD}^d_\kappa(X) \colon \text{For all box-open d-dihypergraphs H on X, either H} \\ / \text{ admits a κ-coloring, or there is a continuous homomorphism } \\ f \colon {}^\kappa d \to X \text{ from } \mathbb{H}_{{}^\kappa d} := \bigcup_{t \in {}^{<\kappa} d} \prod_{i \in d} N_{t \ \widehat{\ }^{\sim} (i)} \text{ to H}. \end{array}$

 $\mathsf{ODD}_\kappa^d(X,\mathsf{Def}_\kappa)$ denotes the restriction to definable box-open dihypergraphs.

By "definable", we always mean "definable from a κ -sequence of ordinals".

The open dihypergraph dichotomy

 $\begin{array}{l} \operatorname{ODD}^d_\kappa(X) \colon \text{For all box-open d-dihypergraphs H on X, either H} \\ / \text{ admits a κ-coloring, or there is a continuous homomorphism } \\ f \colon {}^\kappa d \to X \text{ from } \mathbb{H}_{{}^\kappa d} := \bigcup_{t \in {}^{<\kappa} d} \prod_{i \in d} N_{t \ \widehat{\ }^{\sim} (i)} \text{ to H}. \end{array}$

 $\mathsf{ODD}_\kappa^d(X,\mathsf{Def}_\kappa)$ denotes the restriction to definable box-open dihypergraphs.

By "definable", we always mean "definable from a κ -sequence of ordinals".

The open dihypergraph dichotomy

 $\begin{array}{l} \operatorname{ODD}^d_\kappa(X) \colon \text{For all box-open d-dihypergraphs H on X, either H} \\ / \text{ admits a κ-coloring, or there is a continuous homomorphism } \\ f \colon {}^\kappa d \to X \text{ from } \mathbb{H}_{{}^\kappa d} := \bigcup_{t \in {}^{<\kappa} d} \prod_{i \in d} N_t {}^\frown_{\langle i \rangle} \text{ to H}. \end{array}$

 $\mathsf{ODD}_\kappa^d(X,\mathsf{Def}_\kappa)$ denotes the restriction to definable box-open dihypergraphs.

By "definable", we always mean "definable from a κ -sequence of ordinals".

Theorem (Schlicht, Sz, 2023)

After a Lévy collapse of λ to κ^+ , the following hold for all definable subsets X of κ :

- $\mathsf{ODD}_{\kappa}^{\kappa}(X)$ if λ is Mahlo.
- $\mathsf{ODD}_{\kappa}^{\kappa}(X,\mathsf{Def}_{\kappa})$ if λ is inaccessible.

Some Applications

Let $X \subseteq {}^{\kappa}\kappa$. $\mathsf{ODD}_{\kappa}^{\kappa}(X)$ implies each of the following:¹

- Versions of the Hurewicz dichotomy:
 - either X is covered by κ -many κ -compact sets, or X contains a closed subset of ${}^{\kappa}\kappa$ which is homeomorphic to ${}^{\kappa}\kappa$.
 - Either $X\subseteq\bigcup_{\alpha<\kappa}[T_\alpha]$ for $<\kappa$ -splitting trees T_α or X contains a superperfect subset.
- The Kechris-Louveau-Woodin dichotomy characterizing when X can be separated from $Y \subseteq {}^{\kappa}\kappa \setminus \{X\}$ by a $\Sigma^0_2(\kappa)$ set.
- The determinacy of Väänänen's perfect set game of length κ for all subsets of κ .
- The asymmetric κ -Baire property.
- The Jayne-Rogers theorem any $f: X \to {}^{\kappa}\kappa$ is $\Delta^0_2(\kappa)$ -measurable if and only if it is a union of κ many continuous functions on relatively closed subsets of X.

¹The first two and last one were obtained for $\kappa = \omega$ by Carroy-Miller-Soukup (2020). For $\kappa > \omega$, all of these were obtained by Schlicht and I (2023).

 ${\mathcal F}$ always denotes a family of closed subsets of ${}^\kappa\kappa$. ${\mathcal I}_{\mathcal F}$ is the κ -ideal generated by ${\mathcal F}$ (i.e., the closure of ${\mathcal F}$ under taking unions of size κ and subsets).

Definition. Suppose $X \subseteq {}^{\kappa}\kappa$, C is a class.

 $\mathsf{CCP}^\mathsf{C}_\kappa(X)$: For any family \mathcal{F} of closed subsets of κ , either $X \in \mathcal{I}_\mathcal{F}$ or X has an $\mathcal{I}_\mathcal{F}$ -positive subset $Y \in \mathsf{C}$.

 $\mathcal F$ always denotes a family of closed subsets of ${}^\kappa\kappa$. $\mathcal I_{\mathcal F}$ is the κ -ideal generated by $\mathcal F$ (i.e., the closure of $\mathcal F$ under taking unions of size κ and subsets).

Definition. Suppose $X \subseteq {}^{\kappa}\kappa$, C is a class.

 $\mathsf{CCP}^\mathsf{C}_\kappa(X)$: For any family \mathcal{F} of closed subsets of κ , either $X \in \mathcal{I}_\mathcal{F}$ or X has an $\mathcal{I}_\mathcal{F}$ -positive subset $Y \in \mathsf{C}$.

Theorem (Louveau)

 $\mathsf{CCP}^{\mathbf{\Sigma}^1_1}_\omega(X)$ holds for all subsets of ${}^\omega\omega$ in Solovay's model.

 ${\mathcal F}$ always denotes a family of closed subsets of ${}^\kappa\kappa$. ${\mathcal I}_{\mathcal F}$ is the κ -ideal generated by ${\mathcal F}$ (i.e., the closure of ${\mathcal F}$ under taking unions of size κ and subsets).

Definition. Suppose $X \subseteq {}^{\kappa}\kappa$, C is a class.

 $\mathsf{CCP}^\mathsf{C}_\kappa(X)$: For any family \mathcal{F} of closed subsets of ${}^\kappa\kappa$, either $X\in\mathcal{I}_\mathcal{F}$ or X has an $\mathcal{I}_\mathcal{F}$ -positive subset $Y\in\mathsf{C}$.

Theorem (Louveau)

 $\mathsf{CCP}^{\mathbf{\Sigma}^1_1}_\omega(X)$ holds for all subsets of ${}^\omega\omega$ in Solovay's model.

Theorem (Solecki)

 $\mathsf{CCP}^{\mathbf{\Pi}^0_2}_{\omega}(X)$ holds for all analytic subsets of ${}^{\omega}\omega$.

By Solecki's result, $\mathsf{CCP}^{\mathbf{\Sigma}^1_1}_\omega(X) \iff \mathsf{CCP}^{\mathbf{\Pi}^0_2}_\omega(X)$ for all $X \subseteq {}^\omega\omega$.

Definition. Suppose $X \subseteq {}^{\kappa}\kappa$.

 $\mathsf{CCP}_{\kappa}(X)$: For any family $\mathcal F$ of closed subsets of ${}^{\kappa}\kappa$, either $X\in\mathcal I_{\mathcal F}$ or there is a continuous function $f:{}^{\kappa}\kappa\to X$ with $f(N_t)\in\mathcal I_{\mathcal F}^+$ for all $t\in{}^{<\kappa}\kappa$.

Definition. Suppose $X \subseteq {}^{\kappa}\kappa$.

 $\mathsf{CCP}_\kappa(X)$: For any family $\mathcal F$ of closed subsets of ${}^\kappa\kappa$, either $X\in\mathcal I_{\mathcal F}$ or there is a continuous function $f:{}^\kappa\kappa\to X$ with $f(N_t)\in\mathcal I_{\mathcal F}^+$ for all $t\in{}^{<\kappa}\kappa$.

 $\mathsf{CCP}_{\kappa}(X,\mathsf{Def}_{\kappa})$ is the restriction to definable families \mathcal{F} of closed sets.

Definition. Suppose $X \subseteq {}^{\kappa}\kappa$.

 $\mathsf{CCP}_{\kappa}(X)$: For any family $\mathcal F$ of closed subsets of ${}^{\kappa}\kappa$, either $X\in\mathcal I_{\mathcal F}$ or there is a continuous function $f:{}^{\kappa}\kappa\to X$ with $f(N_t)\in\mathcal I_{\mathcal F}^+$ for all $t\in{}^{<\kappa}\kappa$.

 $\mathsf{CCP}_{\kappa}(X,\mathsf{Def}_{\kappa})$ is the restriction to definable families \mathcal{F} of closed sets.

Theorem

For any $X \subseteq {}^{\kappa}\kappa$:

- $\mathsf{CCP}_{\kappa}(X) \Longleftrightarrow \mathsf{ODD}_{\kappa}^{\kappa}(X)$.
- $\bullet \; \mathsf{CCP}_{\kappa}(X,\mathsf{Def}_{\kappa}) \Longleftrightarrow \mathsf{ODD}^{\kappa}_{\kappa}(X,\mathsf{Def}_{\kappa}).$

Hence $\mathsf{CCP}_\kappa(X)$ holds for all definable sets X after a Lévy-collapse of a Mahlo cardinal to κ^+ , and an inaccessible suffices for $\mathsf{CCP}_\kappa(X,\mathsf{Def}_\kappa)$.

Form CCP to ODD

Proof sketch.

Suppose H is a box-open κ -dihypergraph on X. Let \mathcal{F} be the family of all closed H-independent subsets of ${}^{\kappa}\kappa$.

 $Y \in \mathcal{I}_{\mathcal{F}} \iff H \upharpoonright Y \text{ has a } \kappa\text{-coloring, for all } Y \subseteq X.$

Lemma

The existence of the following objects is equivalent:

- a continuous homomorphism from $\mathbb{H}_{\kappa_{\kappa}}$ to H,
- a continuous map $f : {}^{\kappa}\kappa \to X$ with $f(N_t) \notin \mathcal{I}_{\mathcal{F}}$ for all $t \in {}^{<\kappa}\kappa$.

Hence $\mathsf{CCP}^{\mathcal{F}}_{\kappa}(X) \iff \mathsf{ODD}^{H \upharpoonright X}_{\kappa}$.

Proof of the Lemma.

 ψ : Suppose $f: {}^{\kappa}\kappa \to X$ is a continuous homomorphism from $\mathbb{H}_{{}^{\kappa}\!\kappa}$ to X.

Claim.
$$f(N_t) \in \mathcal{I}_{\mathcal{F}}^+$$
 for all $t \in {}^{<\kappa}\kappa$.

Proof. Suppose $f(N_t) \subseteq \bigcup_{\alpha < \kappa} X_\alpha$ where each $X_\alpha \in \mathcal{F}$. Construct a continuous increasing sequence $\langle t_\alpha : \alpha < \kappa \rangle$ such that $t_0 = t$ and for each $\alpha < \kappa$,

- $t_{\alpha+1}$ is an immediate successor of t_{α}
- $\bullet f(N_{t_{\alpha+1}}) \cap X_{\alpha} = \emptyset.$

This is possible since otherwise, there exists x_i in $f(N_{t_{\alpha} ^{\frown} \langle i \rangle}) \cap X_{\alpha}$ for each $i < \kappa$. Since f is a homomorphism, $\langle x_i : i < \kappa \rangle \in H \upharpoonright X_{\alpha}$. So $X_{\alpha} \notin \mathcal{F}$.

 \Uparrow : Suppose $f: {}^{\kappa}\kappa \to X$ is continuous with $f(N_t) \in \mathcal{I}^+_{\mathcal{F}}$ for all $t \in {}^{<\kappa}\kappa$. Construct continuous strict order preserving maps $\phi, \iota : {}^{<\kappa}\kappa \to {}^{<\kappa}\kappa$ such that for all $t \in {}^{<\kappa}\kappa$,

- $\bullet \prod_{i < \kappa} N_{\phi(t \cap \langle i \rangle)} \cap X \subseteq H,$
- $f(N_{\iota(t)}) \subseteq N_{\phi(t)}$.

Then $[\phi] = f \circ [\iota]$ will be a continuous homomorphism from \mathbb{H}_{κ_d} to H.

Form ODD to CCP

Let \mathcal{F} be a family of closed subsets of κ . We may assume $\mathcal{I}_{\mathcal{F}} \cap \Pi_1^0 = \mathcal{F}$.

Let H consist of all κ -sequences $\langle x_{\alpha} : \alpha < \kappa \rangle \in {}^{\kappa} \kappa$ with $\{x_{\alpha} : \alpha < \kappa \} \notin \mathcal{F}$.

Lemma

A closed subset C of κ is H-independent if and only if $C \in \mathcal{F}$.

Proof. \Rightarrow : Take a κ -sequence $\langle x_{\alpha} : \alpha < \kappa \rangle \in {}^{\kappa}\kappa$ whose range is dense in C. Then $C = \{x_{\alpha} : \alpha < \kappa\}$ is not in \mathcal{F} , so it is $\mathcal{I}_{\mathcal{F}}$ -positive.

 \Leftarrow : If $H \upharpoonright C$ has a hyperedge $\langle x_{\alpha} : \alpha < \kappa \rangle \in {}^{\kappa}\kappa$ then $C \notin \mathcal{F}$ since C is a superset of the $\mathcal{I}_{\mathcal{F}}$ -positive set $\{x_{\alpha}: \alpha < \kappa\}$.

Hence $\mathsf{CCP}_{\kappa}^{\mathcal{F}}(X) \iff \mathsf{ODD}_{\kappa}^{H \upharpoonright X}$ by the previous slide.

It's all the same in the countable setting

Lemma

$$\mathsf{CCP}_{\omega}(X) \Longleftrightarrow \mathsf{CCP}^{\mathbf{\Sigma}^1_1}_{\omega}(X) \text{ for all } X \subseteq {}^{\omega}\omega.$$

Proof.

It suffices to show $\mathsf{CCP}_\omega(\Sigma^1_1)$. Let X be an $\mathcal{I}_{\mathcal{F}}$ -positive analytic set, and let $f: {}^\omega\omega \to X$ be a continuous surjection. For all $t \in {}^{<\omega}\omega$, take an infinite maximal antichain A_t of nodes u in ${}^{<\omega}\omega$ with $t \subseteq u$ and $f(N_u) \in \mathcal{I}_{\mathcal{F}}^+$.

Construct a strict order preserving map $\phi: {}^{<\omega}\omega \to {}^{<\omega}\omega$ such that $\langle \phi(t^{\frown}\langle i \rangle): i < \omega \rangle$ enumerates $A_{\phi(t)}$ without repetitions for each $t \in {}^{<\omega}\omega$.

 $[\phi](x) := \bigcup_{t \subseteq x} \phi(t)$ for all $x \in {}^{\omega}\omega$. Then $g := f \circ [\phi]$ is a continuous map from ${}^{\omega}\omega$ to X with $g(N_t) \in \mathcal{I}_{\mathcal{T}}^+$ for all $t \in {}^{<\omega}\omega$.

Example: the κ -perfect set property

Let $CCP_{\kappa}(X,\mathcal{F})$ and $CCP_{\kappa}^{\mathsf{C}}(X,\mathcal{F})$ denote the versions for a single family \mathcal{F} of closed sets.

If \mathcal{F} is the family of singletons, $CCP_{\kappa}(X,\mathcal{F})$ is equivalent to the κ -perfect set property.

If V = L, then

- $\operatorname{PSP}_{\kappa}(\Sigma_1^1)$ fails for all $\kappa = \kappa^{<\kappa} > \omega$ (Friedman, Hyttinen, Kulikov).
- $PSP_{\kappa}(C_{\kappa})$ fails for $\kappa = \omega_2$ and the class C_{κ} of continuous images of κ (Lücke, Schlicht).

So $\mathsf{CCP}_{\kappa}(X)$ does not follow from either $\mathsf{CCP}_{\kappa}^{\Sigma_1^1}(X)$ or $\mathsf{CCP}_{\kappa}^{\mathsf{C}_{\kappa}}(X)$.

Example: the asymmetric κ -Baire property

 $X \subseteq {}^{\kappa}\kappa$ has the κ -Baire property if there is an open set $U \subseteq {}^{\kappa}\kappa$ such that $X \triangle U$ is κ -meager (i.e. the union of κ -many nowhere dense sets).

Theorem (Halko, Shelah)

The κ -Baire property holds for κ -Borel sets, but it fails for κ -analytic sets (for the club filter) when $\kappa > \omega$.

Definition (Schlicht). X has the asymmetric κ -Baire property if the the Banach-Mazur game of length κ for X is determined.

In this game, players **I** and **II** play a strictly increasing sequence $\langle s_{\alpha} : \alpha < \kappa \rangle$ in $<\kappa$. I plays in all even rounds (including limit rounds). I wins if $\bigcup_{\alpha < \kappa} s_{\alpha} \in X$.

Example: the asymmetric κ -Baire property

Proposition

If \mathcal{F} is the family of nowhere dense sets, then

- $\mathsf{CCP}_{\kappa}(X,\mathcal{F})$ is equivalent to the asymmetric κ -Baire property.
- $\mathsf{CCP}^{\mathsf{Borel}_{\kappa}}_{\kappa}(X,\mathcal{F})$ implies the κ -Baire property.

So $\mathsf{CCP}_\kappa(X)$ does not imply $\mathsf{CCP}^{\mathbf{\Pi}^0_2}_\kappa(X)$ or even $\mathsf{CCP}^{\mathsf{Borel}_\kappa}_\kappa(X)$.

The Transitive Closed Hypergraph Dichotomy

- $\mathbb{K}^d_X := {}^d X \setminus \{\text{constant sequences}\}\$ is the complete d-hypergraph on X.
- ullet H is box-closed if its complement $H^{\mathsf{c}}:=\mathbb{K}^d_{\scriptscriptstyle X}\setminus H$ is box-open.
- A d-hypergraph H is a d-dihypergraph which is closed under permutations of hyperedges (i.e. $\langle x_{\pi(i)} : i < d \rangle \in H$ for all $\pi \in Sym(d)$ and $\langle x_i : i < d \rangle \in H$).
- H is transitive if all of its vertical sections $H_{\langle x_1,\ldots,x_i,\ldots\rangle}:=\{x\in X:\langle x,x_1,\ldots x_i,\ldots\rangle\in H\}$ are H-cliques.
- H is weakly transitive if all of its vertical sections are unions of κ -many *H*-cliques.

 $\mathsf{TCHD}^d_{\mathfrak{c}}(X)$ states that for any box-closed weakly transitive d-hypergraph H on X, either

- X is a union of κ -many H-cliques,
- or there exists a κ -perfect H-independent set.

The Transitive Closed Hypergraph Dichotomy

Theorem (He)

 $\mathsf{TCHD}^d_\omega(X)$ holds for all analytic subsets X of ${}^\omega\omega$ and all $d<\omega$.

Theorem

Let $d < \kappa$. Suppose \Diamond_{κ} or κ is inaccessible or $\kappa = \omega$. For any $X \subseteq {}^{\kappa}\kappa$:

- $\bullet \; \mathsf{ODD}^d_\kappa(X) \Longrightarrow \mathsf{TCHD}^d_\kappa(X),$
- $\bullet \ \mathsf{ODD}^d_\kappa(X,\mathsf{Def}_\kappa) \Longrightarrow \mathsf{TCHD}^d_\kappa(X,\mathsf{Def}_\kappa).$

Hence $\mathsf{TCHD}^d_\kappa(X)$ holds for all definable sets X after a Lévy-collapse of a Mahlo cardinal to κ^+ , and an inaccessible suffices for the restriction $\mathsf{TCHD}^d_\kappa(X,\mathsf{Def}_\kappa)$ to definable dihypergraphs.

The Transitive Closed Hypergraph Dichotomy

Theorem (He)

 $\mathsf{TCHD}^d_\omega(X)$ holds for all analytic subsets X of ${}^\omega\omega$ and all $d<\omega$.

Theorem

Let $d < \kappa$. Suppose $\lozenge_{\kappa,d}^i$. For any $X \subseteq {}^{\kappa}\kappa$:

- $\bullet \; \mathsf{ODD}^d_\kappa(X) \Longrightarrow \mathsf{TCHD}^d_\kappa(X),$
- $\mathsf{ODD}^d_\kappa(X,\mathsf{Def}_\kappa) \Longrightarrow \mathsf{TCHD}^d_\kappa(X,\mathsf{Def}_\kappa).$

 $\lozenge_{\kappa,d}^i$: There exists a sequence $\langle A_\alpha \subseteq {}^\alpha d : \alpha < \kappa \rangle$ such that $|A_\alpha| < \kappa$ for all $\alpha < \kappa$ and $\{\alpha < \kappa : x \upharpoonright \alpha \in A_\alpha\}$ is cofinal in κ for all $x \in {}^\kappa d$.

From ODD to TCHD

Proof (for inaccessible cardinals and ω).

Suppose H is a box-closed weakly transitive d-hypergraph on X.

By $\mathsf{ODD}^d_{\mathfrak{c}}(X)$, we can assume there exists a continuous homomorphism f from \mathbb{H}_{κ_d} to $H^{\mathsf{c}}.$ Construct a continuous order preserving map $\phi: {}^{<\kappa}d \to {}^{<\kappa}\kappa$ with

 $\prod_{i < d} N_{\phi(t_i)} \subseteq H^c$ for all $\alpha < \kappa$ and all non-constant sequences $\langle t_i : i < d \rangle$ in αd .

At successor stages, use box-openness and the following lemma repeatedly.

Lemma. H^{c} is a dense subset of d(ran(f)).

Proof. Let U_i be an open subset of $\operatorname{ran}(f)$ for all i < d. Take any $\overline{x} = \langle x_1, \dots, x_i, \dots \rangle$ in $\prod_{1 \leq i \leq d} U_i$. It suffices to show $H_{\overline{x}}^{\mathbf{c}} \cap U_0 \neq \emptyset$. Otherwise $U_0 \subseteq H_{\overline{x}}$ and hence $H^{\mathsf{c}} \upharpoonright U_0$ is κ -colorable by weak transitivity. But such a coloring can be pulled back to a κ -coloring of \mathbb{H}_{κ_d} , which cannot exist.

From ODD to TCHD

Proof (for inaccessible cardinals and ω).

Suppose H is a box-closed weakly transitive d-hypergraph on X.

By $\mathsf{ODD}^d_{\mathfrak{c}}(X)$, we can assume there exists a continuous homomorphism f from \mathbb{H}_{κ_d} to $H^{\mathsf{c}}.$ Construct a continuous order preserving map $\phi: {}^{<\kappa}d \to {}^{<\kappa}\kappa$ with

$$\prod_{i < d} N_{\phi(t_i)} \subseteq H^{\mathsf{c}}$$
 for all $\alpha < \kappa$ and all non-constant sequences $\langle t_i : i < d \rangle$ in αd .

At successor stages, use box-openness and the following lemma repeatedly.

Lemma. H^{c} is a dense subset of d(ran(f)).

The set of all
$$[\phi(x)] := \bigcup_{\alpha < \kappa} \phi(x \upharpoonright \alpha)$$
, where $x \in {}^{\alpha}d$, forms a κ -perfect H -independent set.

From ODD to TCHD

Proof (from $\Diamond_{\kappa,d}^i$).

 $\lozenge_{\kappa,d}^i$ is equivalent to the following d-dimensional version:

There exists a sequence $\langle B_{\alpha} \subseteq \mathbb{K}^d_{\alpha d} : \alpha < \kappa \rangle$ such that

- $|B_{\alpha}| < \kappa$ for all $\alpha < \kappa$,
- for all $\langle x_0, \ldots, x_i, \ldots \rangle \in \mathbb{K}^d_{\kappa_d}$ the set $\{\alpha < \kappa : \langle x_0 \upharpoonright \alpha, \ldots, x_i \upharpoonright \alpha, \ldots \rangle \in A_\alpha\}$ is cofinal in κ .

Construct a continuous order preserving map $\phi: {}^{<\kappa}d \to {}^{<\kappa}\kappa$ with $\prod_{i < d} N_{\phi(t_i)} \subseteq H^c$ for all $\alpha < \kappa$ and all $\langle t_i : i < d \rangle \in B_{\alpha}$.

Aims:

- Characterize ODD via games of length κ .
- Determinacy of very general classes of games of length κ .

Feng's games

Feng characterized the open graph dichotomy for sets of reals via a game of length ω . We lift this for $<\kappa$ -dimensional dihypergraphs on κ .

Feng's games

Suppose H is a box-open d-dihypergraph on ${}^{\kappa}\kappa$, where $2 \leq d \leq \kappa$, and $X \subseteq {}^{\kappa}\kappa$.

 $\mathcal{F}_{\kappa}(X,H)$ is the following game of length κ :

where $t_i^{\alpha} \in {}^{<\kappa}\kappa$, $\prod_{i < d} N_{t_i^{\alpha}} \subseteq H$, $i_{\alpha} < d$ and $t_{i_{\beta}}^{\beta} \subseteq t_i^{\alpha}$ for all $\beta < \alpha, i < d$. I wins if $\bigcup_{\alpha < \kappa} t_{i_{\alpha}}^{\alpha} \in X$.

 ODD^I_κ denotes the restriction of $\mathsf{ODD}^d_\kappa(X)$ to a single d-dihypergraph I on X.

Theorem

- $\mathsf{ODD}_{\kappa}^{H \mid X} \implies \mathcal{F}_{\kappa}(X,H)$ is determined.
- If $d < \kappa$, then $\mathsf{ODD}_{\kappa}^{H \upharpoonright X} \iff \mathcal{F}_{\kappa}(X, H)$ is determined.

Feng's games and ODD_κ^d

Proof sketch. Winning strategies for $\mathbf I$ correspond in a straightforward way to continuous homomorphisms from $\mathbb H_{\kappa}$ to $H \! \upharpoonright \! X$.

If $H \upharpoonright X$ has a κ -coloring $X := \bigcup_{\alpha < \kappa} X_{\alpha}$, then \mathbf{II} wins by making sure that the α^{th} color is avoided in round α (i.e., $N_{t_{i\alpha}^{\alpha}} \cap X_{\alpha} = \emptyset$).

Now, suppose σ is a winning strategy for II. Let Run_{σ} denote the set of those positions $p:=\langle t_{\alpha}, r_{\alpha}: \alpha \leq \beta \rangle$ which follow σ .

A position $p \in Run_{\sigma}$ is good for $x \in X$ if $\bigcup_{\alpha < \beta} t_{i_{\alpha}}^{\alpha} \subseteq x$.

$$X_p:=\{x\in X: p \text{ is maximal good for } x\}.$$

Claim. $X = \bigcup_{p \in Run_{\sigma}} X_p$ and each X_p is H-independent.

If $d < \kappa$, then $|Run_{\sigma}| = \kappa$, so $H \upharpoonright X$ has a κ -coloring.

$\mathsf{ODD}_{\kappa}^{\kappa}$ via games

Carroy-Miller-Soukup characterized $\mathsf{ODD}^\omega_\omega(X)$ for subsets X of ${}^\omega\omega$ via a slowed down version of Feng's games. We lift this to the uncountable setting.

Suppose H is a κ -dihypergraph on ${}^{\kappa}\kappa$ and $X\subseteq {}^{\kappa}\kappa$.

 $\mathcal{G}_{\kappa}(X,H)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}\kappa$, $i_{\alpha} < 2$, and $t_{\beta} \subseteq t_{\alpha}$ for all $\beta < \alpha$ with $i_{\beta} = 1$. Let $\mathsf{supp}_{\kappa} := \{\alpha < \kappa : i_{\alpha} = 1\}$.

- If $|\mathsf{supp}_{\kappa}| = \kappa$, then **I** wins if $x := \bigcup_{\alpha \in \mathsf{supp}_{\kappa}} t_{\alpha}$ is in X
- If $|\mathsf{supp}_{\kappa}| < \kappa$, then I wins if $\prod_{\alpha < \kappa} N_{t_{m+\alpha}} \subseteq H$ where m is the least ordinal with $i_{\beta} = 0$ for all $\beta \geq m$.

$\mathsf{ODD}_{\kappa}^{\kappa}$ via games

Theorem. For all box-open κ -dihypergraphs H on κ and all $X \subseteq \kappa$,

$$\mathsf{ODD}_{\kappa}^{H \upharpoonright X} \iff \mathcal{G}_{\kappa}(X,H) \text{ is determined.}$$

Proof idea. Let $\pi(x) := \bigoplus_{\alpha < \kappa} \langle 0 \rangle^{x(\alpha)} \langle 1 \rangle$ for all $x \in {}^{\kappa}\kappa$. Let $\mathbb{H}_{\pi} := \pi^d(\mathbb{H}_{\kappa_{\kappa}})$.

Winning strategies for **I** correspond to continuous homomorphisms from \mathbb{H}_{π} to $H \upharpoonright X$. The proof for **II** uses a similar idea as the previous proof.

Kechris's games

Kechris introduced a general class of games of length ω which encompasses many of the classical games characterizing dichotomies for subsets of ${}^{\omega}\omega$. We consider the versions of length κ for subsets of the κ -Baire space.

Kechris's games

Let $\mathsf{upw}({}^{<\kappa}d)$ denote the set of $\mathsf{upwards}$ closed subsets of ${}^{<\kappa}d$. Let $X\subseteq {}^{\kappa}d$.

Let R be a nonempty set (requirements) and $F: R \to \mathsf{upw}({}^{<\kappa}d)$. $\mathcal{K}_\kappa(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}d$ and $r_{\alpha} \in R$. I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$ and $t_{\alpha+1} \in F(r_{\alpha})$ for all $\alpha < \kappa$.

Kechris's games

Let $\mathsf{upw}({}^{<\kappa}d)$ denote the set of $\mathsf{upwards}$ closed subsets of ${}^{<\kappa}d$. Let $X\subseteq {}^{\kappa}d$.

Let R be a nonempty set (requirements) and $F: R \to \mathsf{upw}({}^{<\kappa}d)$. $\mathcal{K}_\kappa(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}d$ and $r_{\alpha} \in R$. I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$ and $t_{\alpha+1} \in F(r_{\alpha})$ for all $\alpha < \kappa$.

Let $\mathsf{upw}({}^{<\kappa}d)$ denote the set of $\mathsf{upwards}$ closed subsets of ${}^{<\kappa}d$. Let $X\subseteq {}^{\kappa}d$.

Let R be a nonempty set (requirements) and $F: R \to \operatorname{upw}({}^{<\kappa}d)$. $\mathcal{K}_{\kappa}(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}d$ and $r_{\alpha} \in R$. I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$ and $t_{\alpha+1} \in F(r_{\alpha})$ for all $\alpha < \kappa$.

Example

• d:=2, R:=2 and $F(r):=\{t\in {}^{<\kappa}2: t(0)=r\}$ characterizes the κ -perfect set property.

Let $\mathsf{upw}({}^{<\kappa}d)$ denote the set of $\mathsf{upwards}$ closed subsets of ${}^{<\kappa}d$. Let $X\subseteq {}^{\kappa}d$.

Let R be a nonempty set (requirements) and $F: R \to \mathsf{upw}({}^{<\kappa}d)$. $\mathcal{K}_\kappa(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}d$ and $r_{\alpha} \in R$. I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$ and $t_{\alpha+1} \in F(r_{\alpha})$ for all $\alpha < \kappa$.

Example

• $d:=\kappa, R:={}^{<\kappa}\kappa$ and $F(r):=\{t\in{}^{<\kappa}\kappa:r\subseteq t\}$ is the Banach-Mazur game (for the assymmetric κ -Baire property).

Let $\mathsf{upw}({}^{<\kappa}d)$ denote the set of $\mathsf{upwards}$ closed subsets of ${}^{<\kappa}d$. Let $X\subseteq {}^{\kappa}d$.

Let R be a nonempty set (requirements) and $F: R \to \mathsf{upw}({}^{<\kappa}d)$. $\mathcal{K}_\kappa(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}d$ and $r_{\alpha} \in R$. I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$ and $t_{\alpha+1} \in F(r_{\alpha})$ for all $\alpha < \kappa$.

Example

• $d := \kappa$, $R := \kappa$ and $F(r) := \{t \in {}^{<\kappa}\kappa \mid t(0) \ge r\}$ characterizes a variant of the Hurewicz dichotomy.

Let $\mathsf{upw}({}^{<\kappa}d)$ denote the set of $\mathsf{upwards}$ closed subsets of ${}^{<\kappa}d$. Let $X\subseteq {}^{\kappa}d$.

Let R be a nonempty set (requirements) and $F: R \to \operatorname{upw}({}^{<\kappa}d)$. $\mathcal{K}_{\kappa}(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}d$ and $r_{\alpha} \in R$. I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$ and $t_{\alpha+1} \in F(r_{\alpha})$ for all $\alpha < \kappa$.

Theorem

 $\mathsf{ODD}^\kappa_\kappa(X,\mathsf{Def}_\kappa)$ implies that $\mathcal{K}_\kappa(X,F)$ is determined for all nonempty sets R of size $\leq \kappa$ and all nontrivial $F:R \to \mathsf{upw}({}^{<\kappa}d)$.

F is nontrivial if for all $i \in d$, there exists $r \in R$ such that $t(0) \neq i$ for all $t \in F(r)$.

Suppose $R\subseteq \mathcal{P}(\kappa)$, F is a function with domain $R\times^{<\kappa}\kappa$ with $F(r,t)\in \operatorname{upw}(^r(^{<\kappa}\kappa))$ for all r,t. $\mathcal{F}_{\kappa}(X,F)$ is the following game of length κ :

In successor rounds $\alpha+1$, \mathbf{I} plays $t_i^{\alpha+1}\in {}^{<\kappa}\kappa$ for all $i\in r_{\alpha}$ which extend $t_{\beta}:=t_{i_{\beta}}^{\beta}$ for all successor ordinals $\beta\leq\alpha$, so that $\langle t_i^{\alpha+1}:i< r_{\alpha}\rangle\in F(r_{\alpha},\bigoplus_{\beta<\alpha}t_{\beta})$. \mathbf{II} plays $i_{\alpha+1}< r_{\alpha}$ and $r_{\alpha+1}\in R$. In round 0 and limit rounds, \mathbf{I} plays $t_{\alpha}\in {}^{<\kappa}\kappa$ extending t_{β} for all $\beta<\alpha$ and \mathbf{II} plays $r_{\alpha}\in R$.

I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$.

Suppose $R\subseteq \mathcal{P}(\kappa)$, F is a function with domain $R\times^{<\kappa}\kappa$ with $F(r,t)\in \operatorname{upw}(^r(^{<\kappa}\kappa))$ for all r,t. $\mathcal{F}_{\kappa}(X,F)$ is the following game of length κ :

In successor rounds $\alpha+1$, \mathbf{I} plays $t_i^{\alpha+1}\in {}^{<\kappa}\kappa$ for all $i\in r_{\alpha}$ which extend $t_{\beta}:=t_{i_{\beta}}^{\beta}$ for all successor ordinals $\beta\leq\alpha$, so that $\langle t_i^{\alpha+1}:i< r_{\alpha}\rangle\in F(r_{\alpha},\bigoplus_{\beta<\alpha}t_{\beta})$. II plays $i_{\alpha+1}< r_{\alpha}$ and $r_{\alpha+1}\in R$. In round 0 and limit rounds, \mathbf{I} plays $t_{\alpha}\in {}^{<\kappa}\kappa$ extending t_{β} for all $\beta<\alpha$ and \mathbf{II} plays $r_{\alpha}\in R$.

I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$.

Example

• To obtain Kechris's game for $F': \kappa \to \operatorname{upw}({}^{<\kappa}\kappa)$, let $R := \{\{\alpha\} : \alpha < \kappa\}$, $F(\{\alpha\},t) := F'(\alpha)$ for all $t \in {}^{<\kappa}\kappa$

Suppose $R\subseteq \mathcal{P}(\kappa)$, F is a function with domain $R\times^{<\kappa}\kappa$ with $F(r,t)\in \operatorname{upw}(^r(^{<\kappa}\kappa))$ for all r,t. $\mathcal{F}_{\kappa}(X,F)$ is the following game of length κ :

In successor rounds $\alpha+1$, \mathbf{I} plays $t_i^{\alpha+1}\in{}^{<\kappa}\kappa$ for all $i\in r_{\alpha}$ which extend $t_{\beta}:=t_{i_{\beta}}^{\beta}$ for all successor ordinals $\beta\leq\alpha$, so that $\langle t_i^{\alpha+1}:i< r_{\alpha}\rangle\in F(r_{\alpha},\bigoplus_{\beta<\alpha}t_{\beta})$. \mathbf{II} plays $i_{\alpha+1}< r_{\alpha}$ and $r_{\alpha+1}\in R$. In round 0 and limit rounds, \mathbf{I} plays $t_{\alpha}\in{}^{<\kappa}\kappa$ extending t_{β} for all $\beta<\alpha$ and \mathbf{II} plays $r_{\alpha}\in R$.

I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$.

Example

• To obtain Feng's game for a d-dihypergraph H, let $R := \{d\}$ and $F(d,t) := \{\langle t_i : i < d \rangle : \prod_{i < d} N_{t \cap t_i} \subseteq H\}.$

Suppose $R\subseteq \mathcal{P}(\kappa)$, F is a function with domain $R\times^{<\kappa}\kappa$ with $F(r,t)\in \operatorname{upw}(^r(^{<\kappa}\kappa))$ for all r,t. $\mathcal{F}_{\kappa}(X,F)$ is the following game of length κ :

In successor rounds $\alpha+1$, \mathbf{I} plays $t_i^{\alpha+1}\in{}^{<\kappa}\kappa$ for all $i\in r_{\alpha}$ which extend $t_{\beta}:=t_{i_{\beta}}^{\beta}$ for all successor ordinals $\beta\leq\alpha$, so that $\langle t_i^{\alpha+1}:i< r_{\alpha}\rangle\in F(r_{\alpha},\bigoplus_{\beta<\alpha}t_{\beta})$. \mathbf{II} plays $i_{\alpha+1}< r_{\alpha}$ and $r_{\alpha+1}\in R$. In round 0 and limit rounds, \mathbf{I} plays $t_{\alpha}\in{}^{<\kappa}\kappa$ extending t_{β} for all $\beta<\alpha$ and \mathbf{II} plays $r_{\alpha}\in R$.

I wins if $\bigoplus_{\alpha < \kappa} t_{\alpha} \in X$.

Theorem (?). Suppose R consists of pairwise disjoint subsets. Then

$$\mathsf{ODD}^{\kappa}_{\kappa}(X) \implies \mathcal{F}_{\kappa}(X,F)$$
 is determined.

Suppose $s \notin \kappa$, $R \subseteq \mathcal{P}(\kappa)$ and F is a function with domain $R \times {}^{<\kappa}\kappa$ with $F(r,t) \in \operatorname{upw}({}^r({}^{<\kappa}\kappa))$ for all r,t. $\mathcal{G}_{\kappa}(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}\kappa$ and $r_{\alpha} \in R \cup \{s\}$. II has to play $r_{\alpha} \in R$ if the order type of $\sup_{\alpha} := \{\beta < \alpha : i_{\beta} \in R\}$ is a limit ordinal.

- If $|\mathsf{supp}_{\kappa}| = \kappa$, then \mathbf{I} wins if $x := \bigoplus_{\alpha \in \mathsf{supp}_{\kappa}} t_{\alpha}$ is in X
- If $|\mathsf{supp}_{\kappa}| < \kappa$, then **I** wins if $\langle t_{m+\alpha} : \alpha \in r_m \rangle \in F(r_{m-1}, t_{m-1})$ where m is the least ordinal with $r_{\beta} = s$ for all $\beta \geq m$.

Suppose $s \notin \kappa$, $R \subseteq \mathcal{P}(\kappa)$ and F is a function with domain $R \times {}^{<\kappa} \kappa$ with $F(r,t) \in \operatorname{upw}({}^r({}^{<\kappa}\kappa))$ for all r,t. $\mathcal{G}_{\kappa}(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}\kappa$ and $r_{\alpha} \in R \cup \{s\}$. II has to play $r_{\alpha} \in R$ if the order type of $\sup_{\alpha} := \{\beta < \alpha : i_{\beta} \in R\}$ is a limit ordinal.

- If $|\mathsf{supp}_\kappa| = \kappa$, then $\mathbf I$ wins if $x := \bigoplus_{\alpha \in \mathsf{supp}_\kappa} t_\alpha$ is in X
- If $|\mathsf{supp}_{\kappa}| < \kappa$, then I wins if $\langle t_{m+\alpha} : \alpha \in r_m \rangle \in F(r_{m-1}, t_{m-1})$ where m is the least ordinal with $r_{\beta} = s$ for all $\beta \geq m$.

Example

 $\bullet \ \, \text{To obtain Kechris's game for} \, F':\kappa \to \text{upw}({}^{<\kappa}\kappa), \, \text{let} \, R:=\{\{\alpha\}:\alpha<\kappa\}, \\ F(\{\alpha\},t):=F'(\alpha) \, \text{for all} \, t\in {}^{<\kappa}\kappa$

Suppose $s \notin \kappa$, $R \subseteq \mathcal{P}(\kappa)$ and F is a function with domain $R \times {}^{<\kappa} \kappa$ with $F(r,t) \in \operatorname{upw}({}^r({}^{<\kappa}\kappa))$ for all r,t. $\mathcal{G}_{\kappa}(X,F)$ is the following game of length κ :

where $t_{\alpha} \in {}^{<\kappa}\kappa$ and $r_{\alpha} \in R \cup \{s\}$. II has to play $r_{\alpha} \in R$ if the order type of $\sup_{\alpha} := \{\beta < \alpha : i_{\beta} \in R\}$ is a limit ordinal.

- If $|\mathsf{supp}_{\kappa}| = \kappa$, then \mathbf{I} wins if $x := \bigoplus_{\alpha \in \mathsf{supp}_{\kappa}} t_{\alpha}$ is in X
- If $|\mathsf{supp}_{\kappa}| < \kappa$, then I wins if $\langle t_{m+\alpha} : \alpha \in r_m \rangle \in F(r_{m-1}, t_{m-1})$ where m is the least ordinal with $r_{\beta} = s$ for all $\beta \geq m$.

Example

• To obtain the Carroy-Miller-Soukup game for a d-dihypergraph H, let $R:=\{d\}$ and $F(d,t):=\{\langle t_i:i< d\rangle:\prod_{i< d}N_{t^\frown t_i}\subseteq H\}.$

Suppose $s \notin \kappa$, $R \subseteq \mathcal{P}(\kappa)$ and F is a function with domain $R \times {}^{<\kappa}\kappa$ with $F(r,t) \in \operatorname{upw}({}^r({}^{<\kappa}\kappa))$ for all r,t. $\mathcal{G}_{\kappa}(X,F)$ is the following game of length κ :

$$\mathbf{I} \quad t_0 \qquad t_1 \qquad \dots \qquad t_{\alpha} \qquad \dots$$
 $\mathbf{II} \qquad r_0 \qquad r_1 \qquad \dots \qquad r_{\alpha} \qquad \dots$

where $t_{\alpha} \in {}^{<\kappa}\kappa$ and $r_{\alpha} \in R \cup \{s\}$. II has to play $r_{\alpha} \in R$ if the order type of $\sup_{\alpha} := \{\beta < \alpha : i_{\beta} \in R\}$ is a limit ordinal.

- If $|\mathsf{supp}_{\kappa}| = \kappa$, then \mathbf{I} wins if $x := \bigoplus_{\alpha \in \mathsf{supp}_{\kappa}} t_{\alpha}$ is in X
- If $|\mathsf{supp}_{\kappa}| < \kappa$, then **I** wins if $\langle t_{m+\alpha} : \alpha \in r_m \rangle \in F(r_{m-1}, t_{m-1})$ where m is the least ordinal with $r_{\beta} = s$ for all $\beta \geq m$.

Conjecture. Suppose R consists of pairwise disjoint subsets. Then

$$\mathsf{ODD}_{\kappa}^{\kappa}(X) \implies \mathcal{G}_{\kappa}(X,F)$$
 is determined.

Thank you!