Non-linear iterations and the higher Baire spaces

Vera Fischer

University of Vienna

August 21, 2025

Figure: The van Douwen diagram of combinatorial invariants

Definition (Bounding and Domination)

Let f and g be functions from κ to κ .

- **1** Then g eventually dominates f, denoted by $f <^* g$, if $\exists n < \kappa \forall m > n \ (f(m) < g(m))$.
- **2** A family $\mathcal{F} \subseteq {}^{\kappa}\kappa$, is dominating if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathcal{F} (g < {}^{*}f)$.
- **③** A family $\mathcal{F} \subseteq {}^{\kappa}\kappa$ is unbounded if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathcal{F} (f \not\uparrow^* g)$.
- \mathfrak{d}_{κ} and \mathfrak{d}_{κ} denote the least cardinalities of an unbounded and dominating family respectively.
- **5** Finally, $c_{\kappa} = 2^{\kappa}$.

Lemma (Cummings, Shelah)

Let κ be a regular uncountable. Then

$$\kappa^+ \leq \text{cf}\big(\mathfrak{b}\big(\kappa\big)\big) = \mathfrak{b}\big(\kappa\big) \leq \text{cf}\big(\mathfrak{d}\big(\kappa\big)\big) \leq \mathfrak{d}\big(\kappa\big) \leq \mathfrak{c}\big(\kappa\big) = 2^\kappa.$$

Realizing a cardinal constellation

Theorem (Cummings, Shelah)

Assume $\kappa^{<\kappa}$ = κ , GCH above κ and (β, δ, μ) such that

$$\kappa^+ \le \beta = \mathsf{cf}(\beta) \le \mathsf{cf}(\delta) \le \mu \text{ and } \kappa < \mathsf{cf}(\mu).$$

Then there is a cardinal preserving generic extension in which

$$\mathfrak{b}(\kappa) = \beta, \mathfrak{d}(\kappa) = \delta$$
 and $2^{\kappa} = \mu$.

Definition (Hechler and restricted Hechler poset)

- The Hechler poset \mathbb{H} consists of all (s, f) where $s \in \kappa^{<\kappa}, f \in \kappa^{\kappa}$.
- The extension relation is defined as follows $(t,g) \leq_{\mathbb{H}} (s,f)$ iff $s \subseteq t$, $\forall n \in \kappa \ (g(n) \geq f(n))$ and $\forall i \in \text{dom}(t) \setminus \text{dom}(s) \ (t(i) > f(i))$.
- If $A \subseteq {}^{\kappa}\kappa$, then $\mathbb{H}(A) = \{(s, f) : s \in \kappa^{<\kappa}, f \in A\}$ equipped with the same extension relation is known as restricted Hechler forcing.

 $\mathbb{H}(A)$ adjoins a κ -real eventually dominating the elements in A.

Definition

Let (P, \leq_P) be a partial order.

- **1** We call $U \subseteq P$ unbounded if $\forall p \in P \exists q \in U \ (q \nleq_P p)$.
- $\mathfrak{b}(P) = \min\{|U|: U \subseteq P \text{ is unbounded}\}.$
- **3** A subset $D \subseteq P$ is dominating if $\forall p \in P \exists q \in D \ (p \leq_P q)$.

Lemma

Any poset P has a well-founded and dominating subposet P' of P with

$$\mathfrak{d}(P) = \mathfrak{d}(P')$$
 and $\mathfrak{b}(P) = \mathfrak{b}(P')$.

Theorem (Cummings, Shelah)

Let $\kappa = \kappa^{<\kappa}$ and let Q be a well-founded poset with $\mathfrak{b}(Q) \ge \kappa^+$. Then there is a forcing $\mathbb{H}(\kappa, Q)$, which is κ -closed and κ^+ -cc and such that

$$V^{\mathbb{H}(\kappa,Q)} \models Q$$
 can be cofinally embedded into $(\kappa,<^*)$

and thus

$$V^{\mathbb{H}(\kappa,Q)} \models \mathfrak{b}(\kappa) = \mathfrak{b}(Q) \leq \mathfrak{d}(\kappa) = \mathfrak{d}(Q).$$

Definition (Almost Disjointness)

Let $x, y \in [\kappa]^{\kappa}$.

- 1 The sets x and y are almost disjoint if $|x \cap y| < \kappa$.
- ② A family $A \subseteq [\kappa]^{\kappa}$ is κ -almost disjoint if any two pairwise distinct elements in A are almost disjoint.
- 3 An almost disjoint family is κ -maximal almost disjoint (κ -mad) if it is maximal with respect to inclusion.
- **1** The almost disjointness number \mathfrak{a}_{κ} is the minimal size of a κ -maximal almost disjoint family of cardinality at least κ and is denoted \mathfrak{a}_{κ} .

Strong Witnesses

Definition (Hechler poset for adding a mad family)

Let λ be an ordinal. Then \mathbb{H}_{λ} consists of all partial functions

$$p: \lambda \times \kappa \rightarrow 2$$
,

with $dom(p) = F_p \times n_p$ where $F_p \in [\lambda]^{<\kappa}$, $n_p \in \kappa$ and extension relation:

$$q \le p$$
 iff $p \subseteq q$ and $\forall i \in n_q \setminus n_p | q^{-1} \cap F_p \times \{i\} | \le 1$.

Properties

- If G is a \mathbb{H}_{λ} -generic, then for each $\alpha \in \gamma$ let $A_{\alpha} = \{i : \exists p \in G \ p(\alpha, i) = 1\}$.
- ② Then $A_{\lambda} = \{A_{\alpha} : \alpha < \lambda\}$ is κ -almost disjoint.
- **3** Moreover, if $\lambda \geq \kappa^+$ then \mathcal{A}_{λ} is κ -maximal almost disjoint.
- **1** If $\alpha \leq \beta$, then \mathbb{H}_{β} decomposes to $\mathbb{H}_{\beta} \simeq \mathbb{H}_{\alpha} * \dot{\mathbb{H}}_{\lceil \alpha, \beta \rceil}$ as follows:
 - Let G be a \mathbb{H}_{α} -generic In V[G].
 - Let $\mathbb{H}_{[\alpha,\beta)}$ be the poset of all (p,H), where
 - $p: (\beta \setminus \alpha) \times \kappa \to 2$ has domain $dom(p) = F_p \times n_p$, $H \in [\alpha]^{<\kappa}$;
 - $(p, H) \le (q, K)$ iff $p \le_{\mathbb{H}_{\beta}} q$, $K \subseteq H$, $n_p \ge n_q$ and for every $j \in F_q$, $k \in n_p \setminus n_q$ and $i \in K$, if $k \in A_i$, then p(j, k) = 0 holds.

Lemma (Brendle, F.)

Let \mathbb{P} and \mathbb{Q} be posets with $\mathbb{P} \leq \mathbb{Q}$. Suppose $\dot{\mathbb{A}}$ (resp. $\dot{\mathbb{B}}$) is a \mathbb{P} -name (resp. \mathbb{Q} -name) for a poset and $i: \mathbb{A} \to \mathbb{B}$ is an embedding in $V^{\mathbb{Q}}$ such that

- $i(\mathbb{1}_{\mathbb{A}}) = \mathbb{1}_{\mathbb{B}}$,
- $\forall p, p' \in \mathbb{A} (p \leq p' \rightarrow i(p) \leq i(p')),$
- $\forall p, p' \in \mathbb{A} \left(p \perp p' \leftrightarrow i(p) \perp i(p') \right)$ and
- Every max antichain of $\dot{\mathbb{A}}$ in $V^{\mathbb{P}}$ is mapped to a max antichain of $\dot{\mathbb{B}}$ in $V^{\mathbb{Q}}$.

Then $\mathbb{P} * \dot{\mathbb{A}} \leq \mathbb{Q} * \dot{\mathbb{B}}$.

We will make use of the following notation: If (A, \leq_A) is a poset and $y \in A$, then

$$A_y = \{x \in A : x <_A y\} \text{ and } y \uparrow_A = \{x \in A : y <_A x\}.$$

Theorem (GCH)

Let κ be a regular infinite cardinal, β and δ cardinals such that

$$\kappa^+ \leq \beta = \operatorname{cof}(\beta) \leq \operatorname{cof}(\delta).$$

There is a well-founded (index) partial order $(W, <_W)$ of cardinality δ , which has a least and largest elements, denoted c and m respectively, and such that for $Q = W \setminus \{m, c\}, <_Q = (Q \times Q) \cap <_W$ the following holds:

$$\mathfrak{b}(Q) = \beta, \mathfrak{d}(Q) = \delta, \forall b \in Q(|b_{\uparrow_Q}| \ge \delta).$$

Fix $(W, <_W)$, $(Q, <_Q)$ and let $Q' = Q \cup \{m\}$, $<_{Q'} = (Q' \times Q') \cap <_W$.

The bookkeeping

• Fix a surjective bookkeeping function $F: Q \to \beta$ such that for all $\alpha \in \beta$, $F^{-1}(\alpha)$ is cofinal in Q. That is

$$\forall \alpha < \beta \forall b \in Q(b_{\uparrow_Q} \cap F^{-1}(\alpha) \neq \emptyset).$$

Note F exists, since $|Q| = \delta \ge \beta$ and $\forall b \in Q(|b_{\uparrow Q}| \ge \delta)$.

2 Let < denote the product order on $(\beta + 1) \times W$. That is $(\alpha_0, a_0) < (\alpha_1, a_1)$ iff $\alpha_0 \in \alpha_1$ and $a_0 <_W a_1$, or $\alpha_0 = \alpha_1$ and $a_0 <_W a_1$.

Definition

For each (α, a) in $(\beta + 1) \times W$ define recursively a partial order $P_{\alpha, a}$ and take $V_{\alpha, a} = V^{P_{\alpha, a}}$. For each $\alpha \le \beta$ let $P_{\alpha, c} = \mathbb{H}_{\alpha}$. Let $(\alpha, a) \in (\beta + 1) \times Q'$. Suppose

- For each (γ,b) < (α,a) the poset $P_{\gamma,b}$ has been defined.
- ② If $b \neq c$, also a $P_{\gamma,c}$ -name $\dot{T}_{\gamma,b}$ for a forcing notion is given, so that

$$P_{\gamma,b} = P_{\gamma,c} * \dot{T}_{\gamma,b}.$$

and whenever $(\alpha_0, a_0) < (\alpha_1, a_1) < (\alpha, a), c \neq a_0$ then

$$\Vdash_{P_{\alpha_1,c}} \dot{T}_{\alpha_0,a_0} \leq \dot{T}_{\alpha_1,a_1}.$$

Then in particular, for each $(\alpha_0, a_0) < (\alpha_1, a_1) \le (\alpha, a)$ we have $P_{\alpha_0, a_0} \le P_{\alpha_1, a_1}$.

We proceed to define $P_{\alpha,a}$. In $V_{\alpha,c}$ let $T_{\alpha,a}$ be the poset of all functions p with

- \bigcirc dom $(p) = Q'_a$ and
- ② for each $b \in Q'_a$ with $F(b) \ge \alpha$, $\Vdash_{T_{a,b}} p(b) \in \{\emptyset\}$
- of or each $b \in Q'_a$ with $F(b) < \alpha$, $\Vdash_{T_{\alpha,b}} p(b) \in \mathbb{H}(\dot{H}^{\alpha}_b)$, where

$$\dot{H}_{b}^{\alpha}$$
 is a $T_{\alpha,b}$ name for $V^{F(b),b} \cap {}^{\kappa}_{\kappa}$.

The $T_{\alpha,a}$ extension relation is defined as follows: $p \leq_{T_{\alpha,a}} q$ iff

$$supp(q) \subseteq supp(p)$$
 and

for each $b \in \text{supp}(q)$, if $b \in Q'_a, F(b) < \alpha$ then

$$p \upharpoonright b \Vdash_{T_{\alpha,b}} p(b) \leq_{\mathbb{H}(\dot{H}_b^{\alpha})} q(b),$$

where $p \upharpoonright b := p \upharpoonright Q'_b$ and w.l.o.g. we can assume

$$p(b) = (s_b^p, \dot{f}_b^p)$$

where the stem s_b^ρ is in the ground model and \dot{f}_b^ρ is a nice $T_{\alpha,b}$ -name for a κ -real in $V^{P_{F(b),b}} \cap {}^\kappa \kappa$. Finally, define

$$P_{\alpha,a} = P_{\alpha,c} * \dot{T}_{\alpha,a}$$
.

Properties of the poset

- If $\alpha \le \alpha' \le \beta$ and $a \in Q'$, then $V_{\alpha',c} \models T_{\alpha,a} \le T_{\alpha',a}$.

Thus, altogether we have

$$\forall \alpha, \alpha' \leq \beta \ \forall a, b \in W \ (\alpha \leq \alpha' \land a <_W b \rightarrow P_{\alpha,a} \leq P_{\alpha',b}).$$

Remark

In $V_{\alpha,c}$ the following holds: Let $p, q \in T_{\alpha,a}$ for some $a \in Q'$ be such that

$$\text{for each } b \in \text{supp}(q) \cap \text{supp}(p), s_b^p \subseteq s_b^q \vee s_b^p \supseteq s_b^q.$$

Then p, q are compatible, with a common extension $r \in T_{\alpha,a}$ where:

- \bigcirc supp(r) = supp $(p) \cup$ supp(q) and

- \P $\Vdash_{T_{\alpha,b}} r(b) = (s_b^r, \dot{f}_b^r)$ if $b \in \text{supp}(p) \cap \text{supp}(q)$, where

$$s_b^r = s_b^p \cup s_b^q$$

and \dot{f}^r_b is a $T_{\alpha,b}$ -name for the pointwise maximum of \dot{f}^q_b and \dot{f}^p_b .

Lemma

Let $\alpha \leq \beta$, $a \in W$. Then $P_{\alpha,a}$ is κ^+ -c.c. and is κ -closed.

Lemma

Suppose $b \in W$, then the following hold:

- 1 If $p \in P_{\beta,b}$ then $p \in P_{\alpha,b}$ for some $\alpha < \beta$.
- 2 If \dot{f} is a $P_{\beta,b}$ -name for a κ -real then it is a $P_{\alpha,b}$ -name for some $\alpha < \beta$.

Definition (Strong diagonalization)

Let $M \subseteq N$ be models of ZFC, $\mathcal{B} = \{B_{\alpha}\}_{{\alpha}<\gamma} \subseteq M \cap [\kappa]^{\kappa}$ and $A \in N \cap [\kappa]^{\kappa}$. Then we say

$$\Leftrightarrow$$
 (M, N, \mathcal{B}, A)

holds, if for every $h \in M \cap {}^{\kappa \times [\gamma]^{\leq \kappa}} \kappa$ and $m \in \kappa$ we can find $n \geq m$, $F \in [\gamma]^{\leq \kappa}$ satisfying

$$[n,h(n,F))\setminus\bigcup_{\alpha\in F}B_{\alpha}\subseteq A.$$

Lemma (Brendle,F.)

If $\not \succsim (M, N, \mathcal{B}, A)$ holds, then for every $B \in M \cap ([\kappa]^{\kappa} \setminus I(\mathcal{B}))$ we have $|A \cap B| = \kappa$.

Lemma (Brendle, F.)

If $G_{\gamma+1}$ is $\mathbb{H}_{\gamma+1}$ -generic, $G_{\gamma} = G_{\gamma+1} \cap \mathbb{H}_{\gamma}$ and $\mathcal{A}_{\gamma} = \{A_{\alpha}\}_{\alpha < \gamma}$ where

$$A_{\alpha} = \{i : \exists p \in G_{\gamma+1} \ p(\alpha, i) = 1\}$$

for each $\alpha \leq \gamma$, then

$$\Leftrightarrow$$
 $(V[G_{\gamma}], V[G_{\gamma+1}], A_{\gamma}, A_{\gamma}).$

Lemma (Brendle, F.)

Let $M \subseteq N$ be models of ZFC, $P \in M$ a forcing poset such that $P \subseteq M$, G a P-generic filter over N (hence also P-generic over M). Then if

$$\mathcal{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\kappa]^{\kappa}, A \in N \cap [\kappa]^{\kappa} \text{ and } \not \simeq (M, N, \mathcal{B}, A)$$

holds, then

$$\updownarrow$$
($M[G], N[G], \mathcal{B}, A$).

Lemma

$$\forall b \in W \ \forall \alpha < \beta \ (\swarrow (V_{\alpha,b}, V_{\alpha+1,b}, A_{\alpha}, A_{\alpha})).$$

Theorem (Bag, F.)

$$V_{\beta,m} \models \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta \leq \mathfrak{d}_{\kappa} = \delta.$$

 $\mathfrak{b}_{\kappa} \geq \beta$: Let $B \subseteq V_{\beta,m} \cap {}^{\kappa} \kappa$ be such that $|B| < \beta$.

• By $\mathfrak{b}(Q) = \beta$ and counting nice names

$$\exists b \in Q \ \exists \alpha < \beta \ (B \subseteq V_{\alpha,b} \cap {}^{\kappa}\kappa).$$

• As $\forall \gamma < \beta \ \forall c \in Q \ (c \uparrow_Q \cap F^{-1}(\gamma) \neq \varnothing)$

there is $b' \in Q$ with b < b' and $F(b') = \alpha$.

• Then $P_{\alpha+1,b'}$ adds a dominating κ -real over

$$V_{\alpha,b'} \cap {}^{\kappa} \kappa \supseteq V_{\alpha,b} \cap {}^{\kappa} \kappa$$
,

hence B is not unbounded.

 $\mathfrak{a}_{\kappa} \leq \beta$: The family $\mathcal{A}_{\beta} = \{A_{\alpha} : \alpha < \beta\}$ added in the first column is κ -mad in $V_{\beta,m}$.

Suppose note:

- Then $\exists x \in V_{\beta,m} \cap [\kappa]^{\kappa} \ \forall A_{\alpha} \in \mathcal{A}_{\beta} \ (|x \cap A_{\alpha}| < \kappa).$
- But then $\exists \alpha < \beta \ (x \in V_{\alpha,m} \cap \lceil \kappa \rceil^{\kappa})$.
- However $\swarrow (V_{\alpha,m}, V_{\alpha+1,m}, A_{\alpha}, A_{\alpha})$ holds and so

$$|A_{\alpha} \cap x| = \kappa$$
,

which is a contradiction.

Thus

$$V_{\beta,m} \models \beta \leq \mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa} \leq \beta$$
.

- $\delta \geq \mathfrak{d}_{\kappa}$: Let \dot{f} be a $P_{\beta,m}$ -name for a κ -real.
 - Since $\mathfrak{b}(Q) = \beta \ge \kappa^+$ and β is regular,

there are $b \in Q$, $\alpha < \beta$ such that $f \in V_{\alpha,b} \cap {}^{\kappa}\kappa$.

- Let $D \subseteq Q$ be dominating of size δ and let $d \in D$ be such that $b <_Q d$.
- As $\forall \gamma < \beta \ \forall c \in Q \ (c \uparrow_Q \cap F^{-1}(\gamma) \neq \emptyset)$,

$$\exists d_{\alpha,b} \in Q \text{ such that } d_{\alpha,b} > d, F(d_{\alpha,b}) = \alpha.$$

- Then $P_{\alpha+1,d_{\alpha,b}}$ adds a dominating real $g^{d_{\alpha,b}}$ over $V_{\alpha,d_{\alpha,b}} \supseteq V_{\alpha,b}$.
- Thus $\{g^{d_{\alpha,b}}: d \in D, \alpha \in \beta\}$ is dominating.
- It remains to observe that $\{g^{d_{\alpha,b}}: d \in D, \alpha \in \beta\}$ is of size $\delta \cdot \beta = \delta$.

$\delta \leq \mathfrak{d}_{\kappa}$

• For each $a \in Q$ and $P_{\beta,m}$ -generic filter G, let

$$f_G^a = \bigcup \{t_a : \exists p \in G (p(a) = (t_a, \dot{f}_a))\}.$$

- (Claim) If $g \in V_{F(a),a}$ and $b \not\nmid_Q a$, then $V_{\beta,m} \models f_G^b \not\nmid^* g$.
- Now, let $F \subseteq V_{\beta,m} \cap {}^{\kappa} \kappa$ be of size less than δ .
- Note that for each $f \in F$ there is $a_f \in Q$ such that $f \in V_{F(a_f),a_f} \cap {}^{\kappa}\kappa$.
- Now $|\{a_f: f \in F\}| < \delta$, so $\{a_f: f \in F\}$ is not dominating in Q.
- Hence $\exists u \in Q \ \forall f \in F \ (u \not\in_Q a_f)$.
- By the above Claim we have $\forall f \in F (f_G^u \not\uparrow^* f)$.
- Hence F is not dominating.

Theorem (Bag, F.)

Let κ be an infinite regular cardinal, $\kappa^{\kappa} = \kappa$. Assume GCH at and above κ . If β, δ, μ are infinite cardinals with

$$\kappa^+ \le \beta = \operatorname{cof}(\beta) \le \operatorname{cof}(\delta) \le \delta \le \mu \text{ and } \operatorname{cof}(\mu) > \kappa,$$

then there is a κ^+ -c.c. and κ -closed generic extension in which

$$\mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta, \mathfrak{d}_{\kappa} = \delta \text{ and } \mathfrak{c}_{\kappa} = \mu.$$

Proof

In the above construction replace $(Q, <_Q)$ by the following poset $(R, <_B)$:

- R consists of pairs (p, i) such that either $i = 0 \land p \in \mu$ or $i = 1 \land p \in Q$.
- The order relation is defined as $(p,i) <_R (q,j)$ iff $i = 0 \land j = 1$ or $i = j = 1 \land p <_Q q$ or $i = j = 0 \land p < q$ in μ .
- Then $\mathfrak{b}(R) = \mathfrak{b}(Q) = \beta$ and $\mathfrak{d}(R) = \mathfrak{d}(Q) = \delta$ as the map $i: Q \to R$ defined as $b \mapsto (1, b)$ is a cofinal embedding from Q into R.
- The bottom part (μ, ϵ) of R ensures that in the final model $\mathfrak{c}_{\kappa} \ge \mu$ holds.
- Counting nice names implies $\mathfrak{c}_{\kappa} \leq \mu$ in $V_{\beta,m}$.

Since $\mathfrak{b}_{\kappa} = \kappa^+$ implies that $\mathfrak{a}_{\kappa} = \kappa^+$ for κ regular uncountable, in the Easton extension

$$\mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\kappa^{+}<\mathfrak{d}_{\kappa}=\mathfrak{c}_{\kappa}$$

holds simultaneously for all $\kappa \in dom(E)$. Note:

Theorem (Bag, F., Friedman)

In the Easton extension

$$\forall \kappa \in dom(E) \Big(\mathfrak{sp}(\mathfrak{a}_{\kappa}) = \{\kappa^+, 2^{\kappa}\} \Big).$$

Remark

Under some restrictions, one can have a fine global control over $\mathfrak{sp}(\mathfrak{a}_{\kappa})$.

Problem

Each of the following constellations in the countable setting is open:

- $\mathfrak{b} < \mathfrak{a} < \mathfrak{d} < \mathfrak{c}$,
- $\mathfrak{b} < \mathfrak{s} < \mathfrak{d} < \mathfrak{c}$,
- $\mathfrak{b} < \mathfrak{r} < \mathfrak{d} < \mathfrak{c}$,
- $\mathfrak{b} < \mathfrak{u} < \mathfrak{d} < \mathfrak{c}$?

Question

Given a set C of regular uncountable cardinals is it consistent that

$$\kappa^+ < \mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa} < \mathfrak{d}_{\kappa} < \mathfrak{c}_{\kappa}$$

for all $\kappa \in C$ simultaneously?

Let κ be regular uncountable. Then

- (Zapletal) $\mathfrak{s}(\kappa) \geq \kappa$ iff κ is inaccessible, and
- (Suzuki) $\mathfrak{s}(\kappa) > \kappa$ iff κ is weakly compact.

Strong witnesses

Definition

- **1** A sequence $\langle a_{\xi}: \xi < \lambda \rangle$, where each a_{ξ} is in $[\kappa]^{\kappa}$, is κ -eventually splitting if $\forall a \in [\kappa]^{\kappa} \exists \xi < \lambda \ \forall \eta > \xi \ a_{\eta}$ splits a.
- ② A sequence $(a_{\xi}: \xi < \lambda)$, where each a_{ξ} is in $[\kappa]^{\kappa}$, is κ -eventually narrow if $\forall a \in [\kappa]^{\kappa} \exists \xi < \lambda \ \forall \eta > \xi \ a \not\in^{*} a_{\eta}$.

Note that $\tau = \langle a_{\xi} : \xi < \lambda \rangle$ is κ -eventually splitting iff $\tau' = \langle b_{\xi} : \xi < \lambda \rangle$, defined as $b_{2\xi} = a_{\xi}$ and $b_{2\xi+1} = \kappa \setminus a_{\xi}$, is κ -eventually narrow.

Theorem (F., Bag)

Assume (GCH), let κ be strongly inaccessible and let λ bel such that $cof(\lambda) > \kappa$. Then every κ -eventually narrow sequence

$$\tau = \langle a_{\xi} : \xi < \lambda \rangle$$

remains κ -eventually narrow in $V^{\mathbb{H}}$.

Definition

Let κ be regular uncountable.

- If $A \subseteq \mathcal{P}(\kappa)$, then A has the strong intersection property (SIP) if $\forall A' \in [A]^{<\kappa} [|\cap A'| = \kappa]$.
- ② $X \subseteq \kappa$ is a pseudo-intersection of A if $X \subseteq^* A$ for any $A \in A$.

Definition

- ① The generalized pseudo-intersection number $\mathfrak{p}(\kappa)$ is the minimal size of a family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ with the SIP but no pseudo-intersection.
- ② The invariant $\mathfrak{p}_{cl}(\kappa)$ is the minimal size of a family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ of clubs (closed and unbounded sets) in κ having no pseudo-intersection.

- Note that $\mathfrak{p}_{cl}(\kappa) = \mathfrak{b}(\kappa)$ regular uncountable κ .
- (F., Montoya, Schilhan and Soukup) Consistently

$$\mathfrak{p}(\kappa) = \kappa^+ < \mathfrak{b}(\kappa) = (\mathfrak{p}_{cl}(\kappa))$$

Definition

Let \mathcal{C} denote the collection of all clubs in κ .

- $\mathbb{M}(\mathcal{C})$ consists of all pairs (a, C), where $a \in [\kappa]^{<\kappa}$ and $C \in \mathcal{C}$.
- The order is given by $(a', C') \le (a, C)$ if $C' \subseteq C$ and $a' \setminus a \subseteq C$.

Definition

- **①** Let λ be an ordinal. A cardinal κ is λ -strongly unfoldable iff
 - $\mathbf{0}$ κ is strongly inaccessible
 - ② for every κ -model M there is an elementary embedding $j: M \to N$ with critical point κ such that $\lambda < j(\kappa)$ and $V_{\kappa} \subseteq N$.
- ② A cardinal κ is called strongly unfoldable if it is θ -strongly unfoldable for every ordinal θ .

Theorem (Johnstone)

Let κ be strongly unfoldable. Then there is a set forcing extension where the strong unfoldability of κ is indestructible by forcing notions of any size which are $< \kappa$ -closed and have the κ^+ -c.c..

Theorem (F., Bag)

Let κ be a strongly unfoldable cardinal, $2^{\kappa} = \kappa^+$ and let $\lambda > \kappa^+$ be a regular uncountable cardinal. Then there is a set forcing generic extension, in which

$$\mathfrak{s}(\kappa) = \kappa^+ < \mathfrak{b}(\kappa) = \mathfrak{c}(\kappa) = \lambda.$$

Let V_0 be the ground model and let V be the \mathbb{P}^* -generic extension of V_0 , where \mathbb{P}^* is the lottery preparation of κ .

- Then, κ remains strongly unfoldable in any further generic extensions obtained by $< \kappa$ -closed, κ^+ -cc forcing notions.
- Note that \mathbb{P}^* is κ -cc, of size κ , and so $2^{\kappa} = \kappa^+$ in V.
- As κ is strongly unfoldable (in particular strongly inaccessible) in V,
 V ⊨ κ^{<κ} = κ holds as well.

- Let \mathbb{C}_{κ^+} be the $<\kappa$ -support product of κ^+ -many copies of the Cohen forcing $2^{<\kappa}$.
- We first add κ^+ -many Cohen subsets of κ , $\langle y_\alpha : \alpha < \kappa^+ \rangle$ by forcing with \mathbb{C}_{κ^+} and then iteratively diagonalize the club filter for λ -many steps.
- Thus the poset that we are forcing with is $\mathbb{P} = \mathbb{C}_{\kappa^+} * \dot{\mathbb{M}}(\mathcal{C})_{\lambda}$, where $\dot{\mathbb{M}}(\mathcal{C})_{\lambda}$ is a \mathbb{C}_{κ^+} -name for the $< \kappa$ -support iteration of $\mathbb{M}(\mathcal{C})$ of length λ .

Properties (F., Montoya, Schilhan, Soukup)

- **1** This forcing \mathbb{P} has the κ^+ -c.c., is κ -closed and forces that $\mathfrak{c}(\kappa) = \lambda$.
- ② The set of conditions in $\mathbb{M}(\mathcal{C})_{\lambda}$ of the form (\bar{a},q) , where
 - \bar{a} , called the sequence of the stems, is of the form $\langle a_{\beta} : \beta \in I \rangle$ for some $I \in [\lambda]^{<\kappa}$ and $a_{\beta} \in [\kappa]^{<\kappa}$ for each $\beta \in I$,
 - ① q is a function with domain I and for each $\beta \in I$, $q(\beta)$ is a $\mathbb{M}(\mathcal{C})_i$ -name for a club,

is a dense subset of $\mathbb{M}(\mathcal{C})_{\lambda}$.

- **3** The set of conditions in $\mathbb{C}_{\kappa^+} * \dot{\mathbb{M}}(\mathcal{C})_{\lambda}$ of the form (p, \bar{a}, \dot{q}) , where
 - $\mathbf{0}$ $p \in \mathbb{C}_{\kappa^+}$ and $\bar{a} \in V$,

is dense in $\mathbb{C}_{\kappa^+} * \dot{\mathbb{M}}(\mathcal{C})_{\lambda}$.

Remark

1 A nice $\mathbb{M}(\mathcal{C})_{\lambda}$ -name \dot{x} for a subset of κ has the form

$$\bigcup_{\alpha<\kappa} A_{\alpha}\times \{\check{\alpha}\}$$

where

- A_{α} is an antichain in $\mathbb{M}(\mathcal{C})_{\lambda}$ and
- for each $(\bar{a}, q) \in A_{\alpha}$, $\beta \in \text{dom}(q)$, $q(\beta)$ is a nice $\mathbb{M}(\mathcal{C})_{\beta}$ -name.
- **2** Thus, nice $\mathbb{M}(\mathcal{C})_{\beta}$ -names are defined by induction on $\beta \in \lambda$.

Claim

If \dot{x} is a nice $\mathbb{M}(\mathcal{C})_{\lambda}$ -name for a subset of κ , then $|\operatorname{trcl}(\dot{x})| \leq \kappa$.

Proof

This is seen by induction on the length:

- Suppose the claim holds for nice $\mathbb{M}(\mathcal{C})_{\beta}$ -names for every $\beta < \gamma$ and \dot{x} is a nice $\mathbb{M}(\mathcal{C})_{\gamma}$ -name.
- Then by the definition of nice names, \dot{x} is of the form $\bigcup_{\alpha<\kappa}A_{\alpha}\times\{\check{\alpha}\}$, where A_{α} is an antichain in $\mathbb{M}(\mathcal{C})_{\gamma}$ (thus of size $\leq \kappa$).
- For every $(\bar{a},q) \in A_{\alpha}$, $|\operatorname{dom}(q)| < \kappa$ and for each $\beta \in \operatorname{dom}(q)$, q(i) is a nice $\mathbb{M}(\mathcal{C})_{\beta}$ -name, which was assumed to have transitive closure of size at most κ .

- 1 In the generic extension by \mathbb{P} also $\mathfrak{b}(\kappa) = \mathfrak{p}_{cl}(\kappa) = \lambda$ holds:
 - Let F be a family of clubs in κ of size $<\lambda$.
 - By regularity of λ , F appears at an earlier stage i of the iteration.
 - Thus, the next iterand $\mathbb{M}(\mathcal{C})$ adds a pseudo-intersection of the clubs of V_i , so in particular, a pseudo-intersection of F.
- ② \mathbb{P} does not destroy the strongly unfoldability of κ . Thus $V^{\mathbb{P}} \models \mathfrak{s}(\kappa) \geq \kappa^+$.

So it is sufficient to find a splitting family of size κ^+ . We will show that the Cohen reals

$$\bar{y} = \langle y_{\alpha} : \alpha < \kappa^+ \rangle$$

build up such a family.

Claim

 $\bar{y} = \{y_{\alpha} : \alpha < \kappa^+\} \text{ is splitting in } V^{\mathbb{M}(\mathcal{C})_{\lambda}}.$

Proof

- Let \dot{x} be a nice $\mathbb{M}(\mathcal{C})_{\lambda}$ -name for a κ -real in $V^{\mathbb{C}_{\kappa^+}} = V[\bar{y}]$.
- There is a $\gamma < \kappa^+$ such that $\dot{x} \in V[\langle y_\alpha : \alpha < \kappa, \alpha \neq \gamma \rangle].$
- We show that the κ -Cohen real y_{γ} splits \dot{x} .
- W.l.o.g. $\dot{x} \in V$ and we are adding a single Cohen κ -real $y_{\gamma} = y$ over V (by letting $V = V[\langle y_{\alpha} : \alpha < \kappa^{+}, \alpha \neq \gamma \rangle]$ be the new ground model).

Claim

Then $V[y] \models (\Vdash_{\mathbb{M}(\mathcal{C})_{\lambda}} \text{"}\check{y} \text{ splits } \dot{x}$ ").

Proof

- Suppose not. Then $(p, \bar{a}, \dot{q}) \Vdash \dot{x} \setminus \varepsilon \subseteq \dot{y}$ or $(p, \bar{a}, \dot{q}) \Vdash \dot{x} \cap \dot{y} \subseteq \varepsilon$ for some $\varepsilon \in \kappa$ and $(p, \bar{a}, \dot{q}) \in \mathbb{C} * \dot{\mathbb{M}}(\mathcal{C})_{\lambda}$.
- Suppose $(p, \bar{a}, \dot{q}) \Vdash \dot{x} \setminus \varepsilon \subseteq \dot{y}$.
- Let y be the \mathbb{C} -generic over V with p in the generic filter, i.e. $p \subseteq y$.
- Define $y' \in 2^K$ by letting y'(i) = p(i) = y(i) for $i \in dom(p)$ and y'(i) = 1 y(i) otherwise.
- Then V[y] = V[y'] =: W, but possibly $q := \dot{q}[y] \neq \dot{q}[y'] = q'$.
- In W, (\bar{a},q) and (\bar{a},q') are compatible, because their stems are the same. Let $(\bar{a},r) \in \mathbb{M}(\mathcal{C})_{\lambda}$ be their common extensions.
- Now let $(\bar{b}, s) \le (\bar{a}, r)$ and $\delta \in \kappa \setminus \bigcup \{\varepsilon, \text{dom}(p)\}\$ be such that $(\bar{b}, s) \Vdash \delta \in \dot{x}$.

- As $y' \cap y \subseteq \varepsilon$ we have $\delta \notin y$ or $\delta \notin y'$.
- Suppose $\delta \notin y$, then whenever G is $\mathbb{M}(\mathcal{C})_{\lambda}$ -generic over W containing $(\bar{b},s), W[G] \models \dot{x}[G] \setminus \varepsilon \notin y$.
- This is a contradiction because (p, \bar{a}, q) is in the corresponding $\mathbb{C} * \mathbb{M}(\mathcal{C})_{\lambda}$ -generic over V. Similarly for $\delta \notin y'$.
- So suppose $(p, \bar{a}, \dot{q}) \Vdash \dot{x} \cap \dot{y} \subseteq \varepsilon$.
- Then again as $y' \cap y \subseteq \varepsilon$ we have $\delta \in y$ or $\delta \in y'$.
- Suppose $\delta \in y$, then whenever G is $\mathbb{M}(\mathcal{C})_{\lambda}$ -generic over W containing $(\bar{b},s), W[G] \models \dot{x}[G] \cap y \notin \varepsilon$.
- This is a contradiction because (p, \bar{a}, q) is in the corresponding $\mathbb{C} * \mathbb{M}(\mathcal{C})_{\lambda}$ -generic over V.
- Similarly for the case $\delta \in y'$.

Theorem (F., Mejia, 2025*)

Let κ be a supercompact. It is relatively consistent that

$$\kappa^+ < \mathfrak{s}(\kappa) < \mathfrak{b}(\kappa) = \mathfrak{d}(\kappa) < \mathfrak{r}(\kappa) = 2^{\kappa}$$
.

Thank you for your attention!