
Introduction to Fortran

Atmospheric Modelling

Zhou Putian
putian.zhou@helsinki.fi

Zhou Putian Fortran 1 / 77

Outline

• Goals
• Introduction
• Fortran History
• Basic syntax
• Makefile

Zhou Putian Fortran 2 / 77

Goals

• Write simple Fortran programs
• Understand and modify existing Fortran code
• Manage Fortran projects with makefiles

Zhou Putian Fortran 3 / 77

Introduction

https://www.techdotmatrix.com/2018/01/high-lev
el-programming-language-low-level-programming-
language/

Zhou Putian Fortran 4 / 77

Introduction
Two different types of high-level languages:

• Interpreted language (MATLAB, Python, ...)
• Translation to machine-language is performed at run

time by an interpreter
• More convenient but slower (no need to declare

variables; realize your idea quickly ...)

• Compiled language (Fortran, C, C++, ...)
• Translation is performed once
• Run faster (suitable for large-scale computing ...)

However, the border between them for some languages
are not clear.

Zhou Putian Fortran 5 / 77

Introduction

Zhou Putian Fortran 6 / 77

Introduction
What Language Should I Use?

• Generally, use the language you know best
• Interpreted languages are great for

• Interactive applications
• Code development and debugging
• Algorithm development

• For major number crunching, compiled languages
are preferred (Fortran, C, C++)

Zhou Putian Fortran 7 / 77

Fortran History
• Before Fortran, programs were written in assembly

language (very tedious to say the least)
• low-level commands such as “load x from memory

into register 7” or “add values in registers 10 and 11
and write result to register 4”

• Fortran was the first widely-used high-level
computer language

• Developed by John Backus’ team in IBM as an
alternative of assembly language in 1957, short for
Formula Translation

• Program written on a specially formatted green
sheet, then entered as punched cards

Zhou Putian Fortran 8 / 77

Fortran History

https://craftofcoding.wordpress.com/2017/01/28
/read-your-own-punch-cards/

Zhou Putian Fortran 9 / 77

Fortran History

Zhou Putian Fortran 10 / 77

Fortran History

• Fortran 66 (1966), Fortran 77 (1978)
• Fortran 90 (1991)

• "fairly" modern (structures, etc.)
• Current “workhorse” Fortran

• Fortran 95 (minor tweaks to Fortran 90)
• Fortran 2003

• Gradually being implemented by compiler companies
• Object-oriented support
• Interoperability with C is in the standard

• Fortran 2008 (submodules, ...)
• Fortran 2018 (formerly Fortran 2015, released in

2018)

Zhou Putian Fortran 11 / 77

Basic Syntax

• Program is written in a text file called source code or
source file

• Source code must be processed by a compiler to
create an executable file

• Source file suffix can vary, e.g., .for, .f, .F, .f90, .F90,
but we will always use ".f90"

• Since source file is simply text, it can be written with
any text editor

• emacs, vi, gedit, Notepad++, ...

Zhou Putian Fortran 12 / 77

Basic Syntax
Program organization

Most Fortran programs consist of a main program and
one or more subprograms (subroutines, functions).
The usual structure of a Fortran code is:

1 PROGRAM program_name
2 [USE module1]
3 [USE module2]
4 ...
5 IMPLICIT NONE
6 [specification part]
7 [execution part]
8 CONTAINS
9 [subprograms]

10 END PROGRAM program_name

• Suggestion: keep the
source file the same
name as the program:
program_name

• Case insensitive

• Blank spaces serve as
delimiter

• Line break is the
statement separator

Zhou Putian Fortran 13 / 77

Basic Syntax
Program organization

• Comment character is !. Anything from ! to end of
line is ignored by the compiler. Use comments
liberally to document source code.

• Ampersand, &, at end of line tells compiler that
statement is continued on next source line.

• Spaces don’t matter except within literal character
strings, use them liberally to make code easy to
read, e.g., before and after equal signs.

• Note that source lines do not end with semicolons as
in C or Matlab.

Zhou Putian Fortran 14 / 77

Basic Syntax
Variable types

• Intrinsic variable types
• real, integer, complex, logical, character

• Real variables have decimals
• Real can be a whole number, but decimal places are

stored internally
• Even when a real is a whole number, it’s a good

practice to write one decimal place, e.g., write 3.0
rather than 3

• Integer variables do not have decimals
• Logical variables only have two values: .TRUE. and

.FALSE.

Zhou Putian Fortran 15 / 77

Basic Syntax

• Integer arithmetic is truncated, not rounded

3/2 = 1

2/3 = 0

5/(−2) = −2

• If at least one of them is real, results would be also
real

3.0/2.0 = 1.5

2.0/3.0 = 0.6666667

5.0/(−2) = −2.50000000

Zhou Putian Fortran 16 / 77

Basic Syntax

• Logical variables only have two values: .TRUE. and
.FALSE.

• Character variables contain literal text enclosed in
single or double quotes

• e.g., "A", ’Hello’, "Fortran is a computer language."
• Blank spaces within quotes are significant, they are

part of the string (contains more than one
characters).

Zhou Putian Fortran 17 / 77

Basic Syntax
Operators

1 ! Arithmetic operators
2 x = 2.0**(-i) ! power function and negation precedence: first
3 x = x*real(i) ! multiplication and type change precedence: second
4 x = x / 2.0 ! division precedence: second
5 i = i + 1 ! addition precedence: third
6 i = i - 1 ! subtraction precedence: third
7 ! Relational operators
8 a < b ! or (f77) a.lt.b -- less than
9 a <= b ! or (f77) a.le.b -- less than or equal to

10 a == b ! or (f77) a.eq.b -- equal to
11 a /= b ! or (f77) a.ne.b -- not equal to
12 a > b ! or (f77) a.gt.b -- greater than
13 a >= b ! or (f77) a.ge.b -- greater than or equal to
14 ! Logical operators
15 .not.b ! logical negation precedence: first
16 a.and.b ! logical conjunction precedence: second
17 a.or.b ! logical inclusive disjunction precedence: third

Zhou Putian Fortran 18 / 77

Basic Syntax
Variable declaration

• We need to declare the type for every variable
• Variable name

• must start with a letter (a-z)
• can mix with digits (0-9) and underscores (_) but no

blanks
• name length <= 31

• Strongly recommend to adopt the practice of
declaring with "implicit none" (MUST DURING OUR
MODELING COURSE)

• this promises the compiler that you will declare all
variables

• this goes before any type declaration statements

Zhou Putian Fortran 19 / 77

Basic Syntax
Variable declaration

• Parameter variable
• If a variable has known fixed value, it can be declared

as parameter and initialized when declaration.
• The compiler substitutes values wherever variables

appear in code.
• Efficient, since there are no memory accesses
• Example: real, parameter :: pi = 3.14

• Avoid using "l" because it could be mistaken for "1"
or "i" (You could use "L")

• Good idea to establish your own naming
conventions and follow through with them

Zhou Putian Fortran 20 / 77

Basic Syntax
Variable declaration

Example
1 implicit none
2

3 real :: velocity, mass, pi
4 integer :: imax, jdim
5 character :: p
6 character(len=10) :: name ! string
7

8 real, parameter :: pi = 3.14
9 integer, parameter :: one = 1

Zhou Putian Fortran 21 / 77

Basic Syntax
Kind

• Declarations of variables can be modified using
"kind" parameter

• Often used for precision of reals
• Intrinsic function selected_real_kind(n) returns

kind that will have at least n significant digits
• n = 6 will give you "single precision"
• n = 12 will give you "double precision"

• If you want to change precision, can easily be done
by changing one line of code

• Example:
1 integer, parameter :: rk = selected_real_kind(12)
2 real(rk) :: x, z

Zhou Putian Fortran 22 / 77

Basic Syntax
Simple output

The simplest way to print out messages on the screen is
to use ’list-directed’ output

• print *, a, b, ... or write(*,*) a, b, ...

• Examples
1 print *, ra, "This is my character string."
2 write(*,*) "I am at bottom.", ib

Zhou Putian Fortran 23 / 77

Exercise 1
Write a "hello world" program with your editor

• Program should print a character string
• Save it to a file with a .f90 suffix in the name

Zhou Putian Fortran 24 / 77

Solution 1
1 !=======================
2 ! hello world
3 !=======================
4 program hello
5 implicit none
6 write(*,*) &
7 "Hello world."
8 end program hello

Zhou Putian Fortran 25 / 77

Compilation
Fortran is a compiled language as C, so the source code
must be converted into machine code before it can be
executed. This process is called compilation.

Zhou Putian Fortran 26 / 77

Compilation

• A compiler is a program that reads source code and
converts it to a form usable by the computer

• Internally, these steps are performed
• preprocess source code
• check source code for syntax errors
• compiler translates source code to assembly

language
• assembler translates assembly language to machine

language
• linker gathers machine-language modules and

libraries

• All these steps sometimes loosely referred to as
compilation or compiling

Zhou Putian Fortran 27 / 77

Compilation

• Code compiled for a given processor architecture
will not generally run on other processors

• However, this problem will come to you later, when
you start to run your code on different machines

Zhou Putian Fortran 28 / 77

Compilation

• Compilers have huge numbers of options
• Compile hello.f90 on your laptop

• If it simply returns a Unix prompt, it worked
• If you get error messages, read them carefully and

see if you can fix the source code and re-compile

• Once it compiles correctly, type the executable
name at the Unix prompt, and it will print your string

$ gfortran hello.f90

$./a.out

Zhou Putian Fortran 29 / 77

Arithmetic
• Notice: ** is power operator

• 2.51.5: 2.5**1.5

• Built-in math functions (sin, acos, exp, log, log10,
...), the arguments are in parentheses

• sin(0.6), cos(pi), exp(x)

• Exponential notation indicated by letter "e" (single
precision) or "d" (double precision)

• 5.3× 104: 5.3e4, 5.3d4

Zhou Putian Fortran 30 / 77

More List-Directed I/O

• read *, variables is list-directed read, analogous
to print *, variables

• read(*,*) variables VS write(*,*) variables

• Examples:

1 print *, "Enter a float and an integer:"
2 read *, x, j
3 print *, "float = ", x, " integer = ", j
4

5 write(*,*) "Enter a float and an integer"
6 read(*,*) x, j
7 write(*,*) "float = ", x, " integer = ", j

Zhou Putian Fortran 31 / 77

Exercise 2
Write a program to ask for a Celsius temperature (C),
convert it to Fahrenheit (F), and print the result.

• make sure you declare all variables
• use decimal points with all reals, even if they’re

whole numbers
• the math equation is

F = (9/5)∗C+ 32

C = (5/9)∗ (F − 32)

Zhou Putian Fortran 32 / 77

Solution 2
1 !====================================
2 ! ctof.f90
3 ! prompt for Celcius temperature
4 ! print Fahrenheit value
5 !====================================
6 program ctof
7 implicit none
8 real :: c, f
9

10 write(*,*) "Enter temperature in Celcius."
11 read(*,*) c
12 f = (9.0/5.0)*c + 32.0
13 write(*,*) "T = ", f, "degrees Fahrenheit"
14 end program ctof

Zhou Putian Fortran 33 / 77

Array

• Specify static dimensions in declaration
1 real, dimension(10,3,5) :: x
2 real :: m(2,3), n(100)
3 integer, dimension(10) :: I

• Can also specify ranges of dimension indices
1 integer, dimension(3:11, -15:-2) :: ival, jval

• Access array elements using parenthesis
1 a = y(3) + y(4)

• Fortran: column-major array

Zhou Putian Fortran 34 / 77

Array
• Dynamic allocation

• Useful when size is not known at compile time, e.g.,
input value

• Need to specify number of dimensions in declaration
• Need to specify that it’s an allocatable array
1 real, dimension(:,:,:), allocatable :: x, y

• allocate function performs allocation
1 allocate(x(ni,nj,nk), y(ldim,mdim,ndim))

• When you’re done with the variables, deallocate with
deallocate(x, y). But it is not necessary at very
end of code; Fortran will clean them up for you

Zhou Putian Fortran 35 / 77

Array

• Fortran can perform operations on entire arrays like
MATLAB, unlike C.

• To add two arrays, simply use
1 c = a + b ! a, b, c are arrays of the same shape and size

• Can also operate on array sections
1 c(-5:10) = a(0:15) + b(0:30:2) ! must have same shape

• Here b(0:30:2) represents b(0), b(2), b(4), etc., due
to increment specification

• Numbers of elements must be consistent

• Don’t assume that all Matlab matrix rules apply
1 c = a * b ! * is elemental multiply, not matrix multiply

Zhou Putian Fortran 36 / 77

Array
• There are intrinsic functions to perform some

operations on entire arrays
• sum(x): sum up all the elements in x
• product(x): multiply all the elements in x
• minval(x): minimum value in x
• maxval(x): maximum value in x
• matmul(x, y): matrix multiplication of x and y

Zhou Putian Fortran 37 / 77

Exercise 3
Write a program to ask for 2 floating-point vectors of
length 3, calculate the dot product and print the result

• Don’t name the code "dot_product" or "dot". Fortran
has a “dot_product” intrinsic function, there is a
Unix command called "dot".

• Can use array name in list-directed read, and it will
expect the appropriate number of values
(dimension) separated by spaces or commas

c =
3
∑

i=1

aibi = a1 ∗ b1 + a2 ∗ b2 + a3 ∗ b3

Zhou Putian Fortran 38 / 77

Solution 3

1 !=============================
2 ! dotprod.f90
3 ! prompt for two real vectors
4 ! of length 3
5 ! calculate dot product
6 ! print result
7 !=============================
8 program dotprod
9 implicit none

10 real :: c
11 real, dimension(3) :: a, b
12 !-------------------------
13 ! enter data
14 !-------------------------
15 print *, "Enter first vector"
16 read *, a
17 print *, "Enter second vector

"
18 read *, b

1 !---------------------------
2 ! calculate dot product
3 !---------------------------
4 c = a(1)*b(1) + a(2)*b(2) + a

(3)*b(3)
5 ! c = sum(a*b)
6

7 !-------------------------
8 ! print result
9 !-------------------------

10 print *, "Dot product = ", c
11

12 end program dotprod

Zhou Putian Fortran 39 / 77

Control
Conditional

Execute different code based on some condition(s)
• if-else
1 if (condition) then
2 ! do something
3 else if (condition2) then
4 ! ... or maybe alternative something else
5 else
6 ! ... or at least this
7 end if

• Conditional execution of block of source code based
on relational operators <, >, == (equal to), <=, >=,
/= (not equal to), .not., .and., .or.

Zhou Putian Fortran 40 / 77

Control
Conditional

1 integer :: x
2 character(len=9) :: grade
3

4 if (x < 60) then
5 grade = ’fail’ ! < 60
6 else if (x < 70) then
7 grade = ’pass’ ! 60 to 69
8 else if (x < 80) then
9 grade = ’good’ ! 70 to 79

10 else if (x < 90) then
11 grade = ’very good’ ! 80 to 89
12 else
13 grade = ’excellent’ ! >= 90
14 end if

Zhou Putian Fortran 41 / 77

Control
Conditional

• switch-case
1 select case (selector)
2 case (label-list-1)
3 statements-1
4 case (label-list-2)
5 statements-2
6 ...
7 case (label-list-n)
8 statements-n
9 case default

10 statements-default
11 end select

• selector is an expression of type INTEGER,
CHARACTER or LOGICAL (no REAL type can be used)

Zhou Putian Fortran 42 / 77

Control
Conditional

1 integer :: n, range
2

3 select case (n)
4 case (:-10, 10:)
5 range = 1 ! <= -10 or >= 10
6 case (-5:-3, 6:9)
7 range = 2 ! -5 to -3, 6 to 9
8 case (-2:2)
9 range = 3 ! -2 to 2

10 case (3, 5)
11 range = 4 ! 3 or 5
12 case (4)
13 range = 5 ! 4
14 case default
15 range = 6 ! other conditions
16 end select

Zhou Putian Fortran 43 / 77

Control
Loop

Three loop formats
1 ! integer counter
2 do i = start_index, end_index, step
3 statement
4 end do
5

6 ! condition controlled
7 do while (condition)
8 statement
9 cycle ! start directly next loop

10 end do
11

12 ! explicit exit
13 do
14 statement
15 exit ! exit the loop
16 end do

Zhou Putian Fortran 44 / 77

Control
Loop

Examples
1 do i = 10, -10, -2
2 write(*,*) i
3 end do
4

5 do while (x > 0)
6 read(*,*) x
7 totalsum = totalsum + x
8 end do
9

10 do
11 read(*,*) x
12 if (x < 0) then
13 exit
14 else
15 totalsum = totalsum + x
16 end if
17 end do

Zhou Putian Fortran 45 / 77

Exercise 4
Calculate the dot product in Exercise 3 with loop and
print the result.

Zhou Putian Fortran 46 / 77

Solution 4

1 !=============================
2 ! dotprod.f90
3 ! prompt for two real vectors
4 ! of length 3
5 ! calculate dot product
6 ! print result
7 !=============================
8 program dotprod
9 implicit none

10 real :: c
11 real, dimension(3) :: a, b
12 !-------------------------
13 ! enter data
14 !-------------------------
15 print *, "Enter first vector"
16 read *, a
17 print *, "Enter second vector

"
18 read *, b

1 !---------------------------
2 ! calculate dot product
3 !---------------------------
4 c = 0.0
5 do i = 1, 3
6 c = c + a(i)*b(i)
7 end do
8

9 !-------------------------
10 ! print result
11 !-------------------------
12 print *, "Dot product = ", c
13

14 end program dotprod

Zhou Putian Fortran 47 / 77

Procedures
• Calculations may be grouped into subroutines and

functions to perform specific tasks such as:
• read or write data
• initialize data
• solve a system of equations

• Function returns a single object (number, array,
etc.), and usually does not alter the arguments

• Subroutine transfers calculated values (if any)
through arguments

• Fortran uses pass-by-reference: change of variables’
values passed into procedures will be changed after
returning

• Names of dummy arguments don’t have to match
actual names (input variable names)

Zhou Putian Fortran 48 / 77

Procedures
Function

Function: Convert Celsius degree to Fahrenheit degree
1 real function fahrenheit(c)
2 real :: c
3 fahrenheit = (9.0/5.0)*c + 32.0 ! Convert Celsius to fahrenheit
4 end function fahrenheit
5

6 function fahrenheit(c) result(f)
7 real :: c
8 real :: f
9 f = (9.0/5.0)*c + 32.0 ! Convert Celsius to fahrenheit

10 end function fahrenheit

Use functions as
1 degF = fahrenheit(0.0)
2 degF = fahrenheit(degC)

Zhou Putian Fortran 49 / 77

Procedures
Subroutine

Subroutine: converting Celsius degree to Fahrenheit
degree

1 subroutine temp_conversion(celsius, fahrenheit)
2 real :: celsius, fahrenheit
3 fahrenheit = (9.0/5.0)*celsius + 32.0
4 end subroutine temp_conversion

Use subroutine as
1 call temp_conversion(degC, degF)

Zhou Putian Fortran 50 / 77

Procedures
Functions and subroutines can be contained in the
program

1 program main
2 statements
3 contains
4

5 ! Can not write statements outside procedures within "contains"
6

7 subroutine sub(a, b)
8 ...
9 end subroutine sub

10

11 function fun(a, b)
12 ...
13 end function fun
14

15 end program main

They can also be put before or after the main program
in source code, but using "contains" is recommended.

Zhou Putian Fortran 51 / 77

Exercise 5
Modify dot-product program to use a subroutine to
compute the dot product.

• Don’t forget to declare arguments
• Give the subroutine a name different than the

program

Zhou Putian Fortran 52 / 77

Solution 5

1 !=============================
2 ! dotprod.f90
3 ! prompt for two real vectors
4 ! of length 3
5 ! calculate dot product
6 ! print result
7 !=============================
8 program dotprod
9 implicit none

10 real :: c
11 real, dimension(3) :: a, b
12 !-------------------------
13 ! enter data
14 !-------------------------
15 print *, "Enter 1st vector"
16 read *, a
17 print *, "Enter 2nd vector"
18 read *, b

1 !-------------------------
2 ! Calculate dot product
3 !-------------------------
4 call dp(a,b,c)
5

6 !-------------------------
7 ! print result
8 !-------------------------
9 print *, "Dot product = ", c

10

11 contains
12

13 subroutine dp(x,y,d)
14 implicit none
15 real :: d
16 real, dimension(3) :: x, y
17 d = sum(x*y)
18 end subroutine dp
19

20 end program dotprod

Zhou Putian Fortran 53 / 77

Exercise 6

1 Modify dot-product program to use a function to
compute the dot product

2 Modify the Fahrenheit function into a function,
converts, such that if input is in Fahrenheit, it
returns the Celsius equivalence. If input is in Celsius,
it returns Fahrenheit. (Hint: extra input parameter)

Zhou Putian Fortran 54 / 77

Solution 6
1 Dot product function

1 function dotp(x,y)
2 implicit none
3 real :: dotp
4 real, dimension(3) :: x, y
5 dotp = sum(x*y)
6 end function dotp

2 Convert function
1 real function converts(temp, mode)
2 real :: temp
3 integer :: mode
4

5 if (mode == 0) then ! Celcius to Fahrenheit
6 converts = (9.0/5.0)*temp + 32.0
7 else ! Fahrenheit to Celcius
8 converts = (temp- 32.0) * (5.0/9.0)
9 end if

10 end function converts

Zhou Putian Fortran 55 / 77

Module
• A Fortran module can contain procedures, variables

and data structure definitions
• Grouping variables and procedures
• Declaring "global" variables
• Use "contains" to contain procedures

1 module module_name
2 implicit none
3 variable declarations
4 contains
5 procedure definitions
6 end module module_name

Zhou Putian Fortran 56 / 77

Module

• In a program unit that needs to access the
components of a module we need to write:
use module_name

• Use statement must be before implicit none
• use statement may specify specific components to

access by using "only" qualifier:
use solvers_mod, only: nvals, x

Zhou Putian Fortran 57 / 77

Module
main.f90:

1 program main
2

3 use geometry_mod, only : dist
4

5 implicit none
6

7 real :: d ! I am not the
guys in geometry_mod

8

9 call dist(2.0, 3.4, d)
10

11 write(*,*) d
12

13 end program testprog

geometry_mod.f90:
1 module geometry_mod
2

3 implicit none
4

5 real :: d ! I am not the guy
below

6

7 contains
8

9 subroutine dist(x, y, d)
10 real :: x, y
11 real :: d ! I am not the

guy above
12 d = sqrt(x**2 + y**2)
13 end subroutine dist
14

15 end module geometry_mod

Zhou Putian Fortran 58 / 77

Module
• Fortran style suggestions

• Group global variables in modules based on the
module goal

• Name modules (and associated files) with "_mod" in
the name, e.g., solvers_mod, solvers_mod.f90

• Employ "use only" for all variables required in
program unit

• All variables then appear at top of program unit in
declarations or "use" statements

Zhou Putian Fortran 59 / 77

Module
Compile the module files and the program file: compile
module files first, then compile the program file, link
them to generate executable file finally.

$ gfortran -c geometry_mod.f90 # get geometry_mod.o and

geometry_mod.mod,→

$ gfortran -c main.f90 # get main.o

$ gfortran -o main.exe geometry_mod.o main.o

$./main.exe # run the code

Zhou Putian Fortran 60 / 77

Exercise 7
Put the dot product subroutine or function to a module,
then use the module in the main program to access the
procedure.

• save the module to a separate file
• compile the module file and the main program file,

link them and run the code

Zhou Putian Fortran 61 / 77

Solution 7
main.f90

1 program dotprod
2

3 use math_mod
4

5 implicit none
6

7 ...
8

9 call dp(a,b,c)
10

11 ...
12

13 end program dotprod

math_mod.f90
1 module math_mod
2

3 contains
4

5 subroutine dp(x,y,d)
6 implicit none
7 real :: d
8 real, dimension(3) :: x, y
9 d = sum(x*y)

10 end subroutine dp
11

12 end module math_mod

compile and run
$ gfortran -c math_mod.f90

$ gfortran -c main.f90

$ gfortran -o main.exe math_mod.o main.o

$./main.exe

Zhou Putian Fortran 62 / 77

Make
• Large projects

• consist of multiple files, including the main program,
module files and maybe procedure files

• bad practice to put everything in the same file
• recommended to create a separate file for each

module, and group all the procedures to different
modules

• easier to read, edit, understand, as well as more
efficient to compile, debug, maintain and develop.

• We can compile the project in the way as shown
above, but it is not flexible and needs to write the
commands every time. The command make is used
to manage projects and make the compilation
easier.

Zhou Putian Fortran 63 / 77

Make

• make is a Unix utility to help manage codes
• When you type "make" in the command line, it will

look for a file called "makefile" or "Makefile", or the
specified name

• Makefile is a file that tells the make utility what to do
• Usage:

$ make

(or) $ make -f <makefile_name>

• Check the full manual of ’GNU make’ at http:
//www.gnu.org/software/make/manual/make.html

Zhou Putian Fortran 64 / 77

Make
makefile

• Makefile contains different sections with different
functions, the sections are not executed in order!

• Comment character is #, line continuation is \
• There are defaults for some values, but we

recommend to define everything explicitly
• Variables

• define variables like: F90 = gfortran

• no quotes are required, and string may contain
spaces

• use variable as $(F90) or ${F90}

Zhou Putian Fortran 65 / 77

Make
• In makefile, you define the rules

target: prerequisites

<tab>recipe

• The target is any name you choose, often use the
name of executable

• Prerequisites are files that are required by target,
e.g., executable requires object files

• Recipe tells what you want the makefile to do
• make will

• search for the first target in the makefile
• checks the time stamps on the prerequisites
• if anyone is newer, make will update it
• once all the prerequisites are updated as required, it

performs the recipe
Zhou Putian Fortran 66 / 77

Make
Example

compiler

F90 = gfortran

objects

OBJ = geometry_mod.o main.o

compile and link

main.exe: $(OBJ)

<tab>$(F90) $(OBJ) -o main.exe

geometry_mod.o: geometry_mod.f90

<tab>$(F90) -c geometry_mod.f90 -o geometry_mod.o

main.o: main.f90

<tab>$(F90) -c main.f90 -o main.o

Clean object files and executable file

clean:

<tab>rm -f *.o *.exe

When there are multiple targets, specify desired target as argument to make command,

otherwise the first target will be used

$ make

$ make clean

Zhou Putian Fortran 67 / 77

Exercise 8
Write a makefile for any of the previous exercises. Test
your makefile with the make command.

Zhou Putian Fortran 68 / 77

Input/Output
• List-directed output, print * or write(*,*), gives

little control
• Use formatted output (read for input):
write(unit, format) variables

• Here unit is an integer number indicating where you
want to write data, some units are usually reserved
and you should not use for your files:

• stdin (read from screen): 5
• stdout (write to screen): 6
• stderr: 0

• An example of writing to a file
1 open(11, file="mydata.dat") ! open a file named mydata.dat
2 ! 11 is file unit number
3 write(11, *) 123 ! write to the file with the same unit
4 close(11) ! close the file when you finished writing

Zhou Putian Fortran 69 / 77

Input/Output
Format

• Definitions
• w: output width
• d: number of digits after the decimal point
• m: minimum number of characters
• e: exponential digits

• format are included between "(and)".
• the default is right-justified
• all of them also fit to "read"

Zhou Putian Fortran 70 / 77

Input/Output
• example table

Data type Format Example Output Comments
integer Iw, Iw.m write(*, "(i5.3)") 12 012 padding with zeros

write(*, "(i5.3)") 1234 1234

write(*, "(i5.3)") 123456 *****
showing * when
exceeding w

string A, Aw write(*, "(a)") "hello" hello output any length
write(*, "(a3)") "hello" hel take first w
write(*, "(a3)") "hi" hi

decimal Fw.d write(*, "(f5.2)") 1.2 1.20 tailing zeros
write(*, "(f5.2)") 1.226 1.23 round the number
write(*, "(f5.2)") 123.2 ***** too long

exponential Ew.d write(*, "(e8.1)") 123.2 0.1E+03 w >= 6 + d
scientific ESw.d write(*, "(es8.1)") 123.2 1.2E+02 w >= 6 + d

ESw.dEe write(*, "(es8.1e3)") 0.1232 1.2E-001 w >= 4 + d + e

• The formats can be combined with commas
write(∗, "(a, f6.2, i5 , es15.3)") "answers are ", x, j, y

• You can check a full list of formats here:
https://www.cs.mtu.edu/~shene/COURSES/cs201/
NOTES/chap05/format.html

Zhou Putian Fortran 71 / 77

Exercise 9
Write the result of dot product to a file.

Zhou Putian Fortran 72 / 77

Solution 9
1 program main
2

3 ...
4

5 !----------------------------
6 ! write result to file
7 !----------------------------
8 open(21, file="dot_product.dat")
9 write(21, "(a, f6.3)") "dot product = ", c

10 close(21)
11 write(*,*) ! an empty line
12 write(*,*) "Output written to file dot_product.dat"
13

14 ...
15

16 end program main

Zhou Putian Fortran 73 / 77

Exercise 10
Integration of cosine

• Integration of cosine from 0 to π/2 with mid-point rule
• Integral ≈ sum of rectangles (height * width)
∫ b
a cos(x)dx ≈

∑m
i=1 cos[a+ (i− 0.5)h] · h

• parameters as an example:

1 a = 0; b = pi/2 ! range
2 m = 8 ! # of increments
3 h = (b-a)/m ! increment

Zhou Putian Fortran 74 / 77

Exercise 10
Write a program to perform the integration of cosine
using the mid-point rule

• Write a function integral to perform integration, m,
a, h are input to integral

• The main program calls integral a few times (using
do loop), each time with a larger m than the
previous time. The purpose is to study the
convergence trend. (hint: you can use m=25*2**n; n
is the loop index)

Zhou Putian Fortran 75 / 77

Solution 10

1 program integration_with_doloop
2
3 ! This program computes the numerical

integration of cosine function
4 !
5 ! Written by: Kadin Tseng
6 ! Date written: September 19, 2012
7
8 implicit none
9 real, parameter :: pi=3.141593

10 real :: a, b, h, integ, integral
11 integer :: n, m
12
13 a = 0.0 ! lower limit of integration
14 b = pi/2 ! upper limit of integration
15 do n=1, 4 ! number of cases to study
16 m = 25*2**n ! number of increments
17 h = (b - a)/m ! increment length
18 integ = integral(a, h, m)
19 write(*,*) "No. of increments = ", m, &
20 " Integral value is ", integ
21 end do

1 contains
2
3 real function integral(a, h, m)
4 ! performs midpoint integration
5
6 implicit none
7
8 real :: a, h, x
9 integer :: m, i

10
11 integral = 0.0 ! initialize integral
12
13 do i=1, m
14 ! mid-point of increment i
15 x = a+(i-0.5)*h
16 integral = integral + cos(x)*h
17 end do
18
19 end function integral
20
21 end program integration_with_doloop

Zhou Putian Fortran 76 / 77

References

• Lots of books available, e.g., "Fortran 95/2003
Explained" by Metcalf, Reid, and Cohen is good

• Gfortran:
http://gcc.gnu.org/wiki/Gfortran

• Fortran wiki:
http://fortranwiki.org/fortran/show/HomePage

• CSC training course:
https://github.com/csc-training/fortran-in
troduction

• Use google

Zhou Putian Fortran 77 / 77

