Quantum analytic Langlands correspondence from probability theory?

Jörg Teschner

Joint work with Davide Gaiotto; in parts based on joint work with Duong Dinh and Troy Figiel

University of Hamburg, Department of Mathematics and DESY

Context and motivation

Probability theory has lead to game-changing progress on conformal field theories (CFTs) such as Liouville theory.

This sheds light on some of the deepest questions on quantum field theory:

How to construct them **non-perturbatively**, and how to make **concrete predictions** about them.

This talk is devoted to a **mathematical application**:

A new branch of the geometric Langlands program, generalising the **analytic Langlands correspondence** (Etingof, Frenkel, Kazhdan).

Gist of the analytic Langlands-correspondence

Analytic Langlands-correspondence conjecture¹: A correspondence between two types of geometric objects associated to a Riemann surface C

 \leftrightarrow (**B**) Real opers

Opers: Differential **oper**ators on C of the form $\partial_z^2 + t(z)$, $t(z) = \frac{1}{2} \{A, z\}^2$.

Analytic continuation of local solutions along closed curves γ

$$(\partial_z^2 + t(z))\chi_i(z) = 0, \qquad \chi_i(\gamma \cdot z) = \sum_{j=1}^2 M_{ij}(\gamma)\chi_j,$$

defines monodromy of oper.

(B) Real opers: Opers with real monodromy (rare! $M_{ij}(\gamma)$ generically complex).

Correspondence (A) \leftrightarrow (B): geometric description of solution to spectral problem.

¹After Etingof-Frenkel-Kazhdan '19; strengthens previous proposal of J.T. '17

 $^{{}^{2}{}A,z} = A'''/A' - \frac{3}{2}(A''/A')^{2}$ is the Schwarzian derivative of A(z) we have seen in many other talks.

Hitchin's moduli spaces

Hitchin moduli space $\mathcal{M}_{\text{Hit}}(C)$ (*C*: Riemann surface): Moduli space of pairs (\mathcal{E}, φ) ,

- \mathcal{E} : holomorphic G = SL(2)-bundle on C,
- $\varphi \in H^0(C, \operatorname{End}(\mathcal{E}) \otimes K).$

More concretely:

• Describe \mathcal{E} by cover $U_0 \cup \bigcup_{k=1}^N U_k$, U_k : small discs around points $P_k \in C$,

transition functions
$$g_{0k} = \begin{pmatrix} 1 & -x_k \\ 0 & z(P) - z(P_k) \end{pmatrix}, \quad k = 1, \dots, N,$$

- and describe φ by holomorphic matrix-valued differentials,

$$\varphi_0 = \begin{pmatrix} a_0 & b_0 \\ c_0 & -a_0 \end{pmatrix} dz \text{ on } U_0, \qquad \varphi_k = g_{0k} \cdot \varphi_0 \cdot g_{0k}^{-1}, \text{ on } U_k,$$

where c_0 can be expanded into "standard functions" $c_0 = \sum_{k=1}^{N} p_k \eta_k(z)$.

The tuples $\boldsymbol{x} = (x_1, \ldots, x_N)$ and $\boldsymbol{p} = (x_1, \ldots, x_N)$ give coordinates on $\mathcal{M}_{\text{Hit}}(C)$.

³Technically η_k : sections of line bundle defined by P_1, \ldots, P_N .

Hitchin's integrable system

Integrability: There exists a canonical Poisson structure on $\mathcal{M}_{Hit}(C)$, and

$$q(z) = \frac{1}{2} \operatorname{tr}(\varphi^2(z)) = \sum_{r=1}^{3g-3+n} H_r Q_r(z) \in H^0(C, K^2), \qquad [H_r, H_s] = 0.$$

Local form:

$$H_r = \sum_{st} C_r^{st}(\boldsymbol{x}) p_s p_t.$$

Quantisation (Beilinson-Drinfeld): There exist differential operators

$$\mathsf{H}_{r} = -\hbar^{2} \sum_{st} C_{r}^{st}(\boldsymbol{x}) \frac{\partial}{\partial x_{r}} \frac{\partial}{\partial x_{s}} + \text{lower degree}, \qquad r = 1, \dots, 3g - 3 + n,$$

on $K_{\text{Bun}}^{1/2}$, Bun_G : moduli space of holomorphic G = SL(2)-bundles, satisfying

$$[H_r, H_s] = 0, \qquad r, s = 1, \dots, d, \qquad d = 3g - 3 + n.$$

Analytic Langlands correspondence

We may consider the pair of complex conjugate eigenvalue equations

$$\mathsf{H}_r \Psi = E_r \Psi, \qquad \bar{\mathsf{H}}_r \Psi = \bar{E}_r \Psi, \qquad r = 1, \dots, d.$$
 (1)

We may then look for smooth⁴ solutions in $|K_{\rm Bun}| \equiv K_{\rm Bun}^{1/2} \otimes \bar{K}_{\rm Bun}^{1/2}$, locally of the form

$$\Psi(\boldsymbol{x}, \bar{\boldsymbol{x}}) = \sum_{k,l} C_{kl} \psi_k(\boldsymbol{x}) \bar{\psi}_l(\bar{\boldsymbol{x}}),$$

 $(\boldsymbol{x} = (x_1, \ldots, x_d)$: local coordinates on $\operatorname{Bun}_G(C)$), which are

single-valued⁵, and furthermore square-integrable⁶.

Conjecture:

⁴Away from "wobbly" bundles admitting nilpotent Higgs fields.

⁵J.T., 2011, 2017.

⁶Etingof-Frenkel-Kazhdan, 2019.

Real opers

A real oper is an oper with real monodromy. Real opers are in one-to-one correspondence to a certain class of hyperbolic metrics on C, for example:

$$\begin{aligned} &(\partial_u^2 + t_0(u))\phi(u,\bar{u}) = 0, \quad (\bar{\partial}_{\bar{u}}^2 + \bar{t}_0(\bar{u}))\phi(u,\bar{u}) = 0, \\ &\rightsquigarrow ds^2 = \frac{dud\bar{u}}{(\phi(u,\bar{u}))^2} \text{ has } R = -1, \end{aligned}$$

 \rightsquigarrow uniformisation, e.g. for $C = C_{1,1}$:

Other real opers obtained by grafting.

Classification of real opers⁷:

All real opers can be obtained in this way, classified by counting singularity lines $\simeq \text{even}^8$ half-integer **measured laminations** $\Lambda \in \mathcal{ML}^+_C(\frac{1}{2}\mathbb{Z})$.

Extracting eigenvalues E_r from the real opers:

$$t(z) - t_0(z) = \sum_{r=1}^{3g-3+n} Q_r(z)E_r.$$

⁷W. Goldman; Review of relevant results: Dumas, arXiv:0902.1951.

⁸The natural projection to $H_1(C, \mathbb{Z}/2)$ vanishes.

Separation of variables – making ALC computable

Claim:⁹ There exist explicit integral transformations of the form

$$\Psi(\boldsymbol{x}) = \int d^2 \boldsymbol{u} \ K(\boldsymbol{x}, \boldsymbol{u}) \, \Phi(\boldsymbol{u}), \qquad (2)$$

 $\mathbf{u} = (u_1, \ldots, u_d; \overline{u}_1, \ldots, \overline{u}_d)$, such that

$$\begin{aligned} \mathsf{H}_{r}\,\Psi(\boldsymbol{x}) &= E_{r}\Psi(\boldsymbol{x}), \\ \bar{\mathsf{H}}_{r}\,\Psi(\boldsymbol{x}) &= \bar{E}_{r}\Psi(\boldsymbol{x}), \end{aligned} & \Leftrightarrow \begin{aligned} (\partial_{u_{r}}^{2} + t(u_{r}))\Phi(\boldsymbol{u}) &= 0, \\ (\bar{\partial}_{\bar{u}_{r}}^{2} + \bar{t}(\bar{u}_{r}))\Phi(\boldsymbol{u}) &= 0, \end{aligned} & r = 1, \dots, d. \end{aligned}$$

The proof generalises a paradigm from the theory of quantum integrable models called Separation of Variables (SOV).

 $\Phi(u)$ and therefore $\Psi(x)$ are single-valued iff monodromy of $\partial_u^2 + t(u)$ is real (conjugate to representation $\rho : \pi_1(C) \to SL(2,\mathbb{R})$). It follows that

$$\Phi(\boldsymbol{u}) = \prod_{r=1}^{D} \phi(u_r, \bar{u}_r), \qquad \begin{array}{l} (\partial_u^2 + t(u))\phi(u, \bar{u}) = 0, \\ (\bar{\partial}_{\bar{u}}^2 + \bar{t}(\bar{u}))\phi(u, \bar{u}) = 0. \end{array}$$
(3)

⁹Ambrosino-J.T. for g = 0, Dinh-J.T. for g > 0 (in preparation). Building upon work of Sklyanin; Frenkel '95; Enriquez-Feigin-Roubtsov; Enriquez-Roubtsov; Felder-Schorr; Ribault-J.T., Frenkel-Gukov-J.T.

Deformation of Hitchin eigenvalue equations I

Hamiltonians H_r depend on moduli τ_r of $C \Rightarrow$ can define a second dynamics:

Deform $\varphi \to \nabla_{\epsilon_2} = \epsilon_2 \partial_z + \varphi$, and identify

$$t_r = \frac{1}{\epsilon_2} \tau_r.$$

The resulting non-autonomous dynamical system,

$$\frac{\partial}{\partial \tau_r}\varphi(z) = \{\varphi(z), H_r\},\$$

describes monodromy-preserving deformations of $(\mathcal{E}, \nabla_{\epsilon_2})$.

Compare the two types of **time-dependent** Schrödinger/heat equations:

a) $i\hbar \frac{\partial}{\partial t_r} \Psi_k(\boldsymbol{x}, \boldsymbol{t}; \boldsymbol{\tau}) = \mathsf{H}_r \Psi_k(\boldsymbol{x}, \boldsymbol{t}; \boldsymbol{\tau}),$ solved by spectral decomposition (ALC),

n)
$$i\hbar\epsilon_2 \frac{\partial}{\partial \tau_r} \Psi_k(\boldsymbol{x}, \boldsymbol{\tau}) = \mathsf{H}_r \Psi_k(\boldsymbol{x}, \boldsymbol{\tau}), \text{ or with } \mathcal{D}_r := -\frac{1}{\hbar^2} \mathsf{H}_r, \quad k := \frac{\epsilon_2}{i\hbar} - 2,$$

$$\Rightarrow \qquad (k+2)\frac{\partial}{\partial \tau_r}\Psi_k(\boldsymbol{x},\boldsymbol{\tau}) = \mathcal{D}_r\Psi_k(\boldsymbol{x},\boldsymbol{\tau}) \qquad (\mathsf{KZB})$$

Deformation of Hitchin eigenvalue equations II

KZB is a natural deformation of Hitchin eigenvalue equations,

$$(k+2)\frac{\partial}{\partial\tau_r}\Psi_k(\boldsymbol{x},\boldsymbol{\tau}) {=} \mathsf{H}_r\Psi_k(\boldsymbol{x},\boldsymbol{\tau})$$

also in the sense that

$$\begin{bmatrix} \Psi(\boldsymbol{x},\boldsymbol{\tau}) = e^{\frac{1}{k+2}S(\boldsymbol{\tau})}\psi(\boldsymbol{x},\boldsymbol{\tau}) + \dots \\ \mathsf{H}_{r}\Psi(\boldsymbol{x},\boldsymbol{\tau}) = (k+2)\frac{\partial}{\partial z_{r}}\Psi(\boldsymbol{x},\boldsymbol{\tau}) \end{bmatrix} \stackrel{\Rightarrow}{\underset{k\to-2}{\Rightarrow}} \begin{bmatrix} \frac{\partial}{\partial \tau_{r}}S(\boldsymbol{\tau}) = E_{r}(\boldsymbol{\tau}), \\ \mathsf{H}_{r}\psi(\boldsymbol{x},\boldsymbol{\tau}) = E_{r}(\boldsymbol{\tau})\psi(\boldsymbol{x},\boldsymbol{\tau}). \end{bmatrix}$$

Quantum analytic Langlands conjecture: (Gaiotto, J.T.)

Main problem: How to construct the relevant solutions to (KZB)?

Probability theory to the rescue

 H_3^+ -WZNW model¹⁰ (see talk by C. Guillarmou):

$$\Psi_k(\boldsymbol{x},\boldsymbol{\tau}) = \left\langle \prod_{k=1}^n \Phi^{j_k}(x_k|z_k) \right\rangle_{W} \coloneqq \int_{h:\mathbb{C}\to\mathbb{H}_3^+} \mathcal{D}[h] \ e^{-S_{WZ}[h]} \prod_{k=1}^n \phi^{j_k}(h(z_k);x_k),$$
$$\phi^j(h;x) = \frac{2j+1}{\pi} \left((1,-x) \cdot h \cdot \begin{pmatrix} 1\\ -\bar{x} \end{pmatrix} \right)^{2j}.$$

For fixed $C = C_{g,n}$: $\Psi_k(\boldsymbol{x}, \boldsymbol{\tau}) \sim \text{Distinguished density on } Bun_G(C)$.

Conjectures: a) $\Psi_k(\boldsymbol{x}, \boldsymbol{\tau})$ is single-valued solution to (KZB). b) If $k + 2 \in i\mathbb{R}, \ \Psi_k(\boldsymbol{x}, \boldsymbol{\tau})$: square-integrable section of $|K|^{-\frac{k}{2}}$.

Puzzles:

a) This is **one** solution. How do we generate an infinite family of solutions labelled by measured laminations $\Lambda \in \mathcal{ML}^+_C(\frac{1}{2}\mathbb{Z})$ (\leftrightarrow real opers)?

b) Can we define correlation functions at $k + 2 \in i\mathbb{R}$ by analytic continuation?

¹⁰Gawedzki-Kupiainen; J.T. 1997, 1999

Address puzzles by mapping to Liouville theory

There exists a one-parameter family of integral transformations¹¹

$$\Psi_k(\boldsymbol{x},\boldsymbol{\tau}) = \int d^2 \boldsymbol{u} \, \mathcal{K}(\boldsymbol{x},\boldsymbol{u};b) \Phi_b(\boldsymbol{u},\boldsymbol{\tau}), \qquad k+2 = -\frac{1}{b^2}, \tag{4}$$

with coordinates $\boldsymbol{\tau} = (z_1, \ldots, z_d)$ for $\mathcal{T}(C)$, intertwining solutions to

KZB-equations

BPZ-equations – quantum opers

$$\left(b^2 \frac{\partial^2}{\partial u_r^2} + \mathcal{T}_r(u_r)\right) \Phi_b(\boldsymbol{u}, \boldsymbol{\tau}) = 0.$$

representation theory of $\widehat{\mathfrak{sl}}_{2,k}$

 $(k+2)\frac{\partial}{\partial z_{x}}\Psi_{k}(\boldsymbol{x},\boldsymbol{\tau})\stackrel{(*)}{=}\mathsf{H}_{r}\Psi_{k}(\boldsymbol{x},\boldsymbol{\tau}),$

representation theory of Virasoro algebra

The probabilistic construction of the H_3^+ -WZNW model (see talk by C. Guillarmou) can probably establish (4) in a completely different way.

¹¹Frenkel-Gukov-J.T. for g = 0, Dinh-J.T. (in preparation) for g > 0.

Building on previous work of Feigin-Frenkel-Stoyanovsky; Ribault-J.T.; Hikida-Schomerus.

Single valued solutions to BPZ-equations

... are the Liouville correlation functions¹²:

$$\begin{split} \Phi_b(\boldsymbol{u},\boldsymbol{\tau}) &= \left\langle \prod_{r=1}^n V_{\alpha_r}(z_r) \prod_{l=1}^d V_{-1/2b}(u_l) \right\rangle_{\text{Liou}}, \\ \left\langle \prod_{r=1}^n V_{\alpha_r}(z_r) \right\rangle_{\text{Liou}} &:= \int\limits_{\phi:C \to \mathbb{R}} \mathcal{D}[\phi] \ e^{-S_{\text{L}}[\phi]} \prod_{r=1}^n e^{2\alpha_r \phi(z_r)}, \\ S_{\text{L}} &= \frac{1}{4\pi} \int_C d^2 x \left(|\nabla \phi(x)|^2 + 4\pi \mu e^{2b\phi(x)} \right). \end{split}$$

Liouville theory \sim Quantum uniformisation^{13}

$$\begin{split} \Phi_b(\boldsymbol{u},\boldsymbol{\tau}) &\sim e^{-b^2 S(\boldsymbol{\tau})} \prod_{r=1}^d \phi_{\mathrm{uni}}(u_r,\bar{u}_r), & \begin{array}{l} (\partial_u^2 + t(u))\phi_{\mathrm{uni}}(u,\bar{u}) = 0, \\ (\bar{\partial}_{\bar{u}}^2 + \bar{t}(\bar{u}))\phi_{\mathrm{uni}}(u,\bar{u}) = 0. \end{split}$$
such that $ds^2 &= \frac{dud\bar{u}}{(\phi_{\mathrm{uni}}(u,\bar{u}))^2} & \text{is the uniformising metric.} \end{split}$

¹²Rigorously constructed by David, Kupiainen, Rhodes, Vargas in 2014.

¹³Polyakov; Takhtajan-Zograf; Zamolodchikov-Zamolodchikov; J.T. 2003; Vartanov-J.T. 2015.

Quantum grafting \simeq Verlinde line operators

Idea of definition: Insert observables defined from **quantised real opers**. If γ : simple closed curve on C,

$$\left\langle L_{\gamma} \prod_{r=1}^{n} V_{\alpha_{r}}(z_{r}) \right\rangle_{\text{Liou}} \coloneqq \int_{\phi: C \to \mathbb{R}} \mathcal{D}[\phi] e^{-S_{\text{L}}[\phi]} \mathcal{L}_{\gamma}[\phi] \prod_{r=1}^{n} e^{2\alpha_{r}\phi(z_{r})},$$
$$\mathcal{L}_{\gamma}[\phi] = \text{Tr}(\mathcal{M}_{\gamma}[\phi]), \qquad \mathcal{M}_{\gamma} = \mathcal{P} \exp\left(\int_{\gamma} A\right), \qquad A = \begin{pmatrix} 0 & -t \\ 1 & 0 \end{pmatrix},$$

where $t(z) = -(\partial_z \phi)^2 + Q \partial_z^2 \phi$. More general Verlinde line operators¹⁴

can be labelled by **measured laminations** $\Lambda \in \mathcal{ML}_C(\frac{1}{2}\mathbb{Z})$!

Key result:

Limit
$$b^2 \to \infty$$
 of $L_{\Lambda} \simeq$ grafting along Λ .

¹⁴E. Verlinde; Alday-Gaiotto-Gukov-Tachikawa-Verlinde; Drukker-Gomis-Okuda-J.T., ...

Analogy with classical Langlands correspondence

The wave functions $\Psi_{\Lambda}(x)$ are good analogs of **automorphic forms**, densities on the double quotient

$$\operatorname{Bun}_{G}(C) \simeq G_{\operatorname{out}} \setminus G((t)) / G[[t]],$$

labelled by laminations $\Lambda \simeq$ representations of fundamental group associated to real opers \sim analogs of Galois representations.

Analytic LanglandsClassical Langlands $Bun_G(C) \simeq G_{out} \setminus G((t)) / G[[t]]$ symmetric space $\Gamma \setminus G / K$ Hitchin HamiltoniansLaplaciansHecke operatorsHecke operatorsHitchin/Hecke eigenfunctionsAutomorphic formsHolonomies of real opersGalois representations

Happy birthday, Antti!