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Introduction

This is joint work with Ben Dodson and Avy Soffer:
J. Stat. Phys. 180, 2020, J. Math. Phys 62, 2021

This is a new field for me. I got interested because of the work of
Damanik - Goldstein on 1D KdV with small amplitude

quasi-periodic data.

We wondered what would happend we consider NLS smooth
random data or KdV with larger amplitude q-p data? As well see,
these are challenging open questions and there are no answers as
yet. Instead, I will review some related questions on the lattice and

the continuum.



The Nonlinear Schrödinger Equation on Rd or Zd

i∂tu(t, x) = −∆u(t, x) + u(t, x) + 2λ|u|2u(t, x),

where u(t, x) ∈ C, λ ≥ 0.

Initial data u(0, x) = u0(x), x ∈ R or Z.

On Rd , assume that u0(x) is uniformly smooth and bounded.
For example:

u0(x) = acos(x) + bcos(
√
2x).

On Zd , ∆ denotes the finite difference Laplacian.

Initial data, u0(x) is bounded or random



Related Dispersive Equations

The KdV equation:

∂tu(t, x) = −∂3xu(t, x) + 6u∂xu

The Anharmonic Crystal Hamiltonian:

1

2

∑
j

{p2j + (qj+1 − qj)
2 + q2j + λq4j }



Examples of Initial Data

Examples on Rd . Mostly we consider d=1

1) u0(x) Periodic function

2) Quasi-periodic u0(x) = a cos(x) + b cos(α x), α irrational

3) Smooth Random u0(x) =
∑

j∈Zd aje
−(x−j)2 , x ∈ R, |aj | ≤ 1

4) Slowly decaying: |u0(x)| ≤ (|x |+ 1)−ϵ, ϵ > 0

5) Random: distributed by equilibrium measure e−H



Some Results in the Continuum

Bourgain (2000) Established Global existence for 1D defocussing
cubic NLS with initial data given by the invariant measure as
L ⇒ ∞.

Bringmann, Deng, Nahmod, and Yue, prove that the ϕ43
Euclidean field model is invariant under a renormalized wave
equation with cubic non linearity. The NLS case is still open.

Recent preprint of Deng-Hani establishes the Kinetic Wave
Equation for NLS in 3D with random initial data up to blowup
time of the Kinetic theory. Non-equilibrium data.



Examples on Z

1) Bounded: |u0(x)| ≤ C , x ∈ Z.

2) Quasi-periodic: u0(x) = a cos(απx), x ∈ Z, α irrational

3) Random: u0(x) independent identically distributed (iid), x ∈ Z.

4) u0(x) in equilibrium ∼ e−β
∑

x{|∇u(x)|2+|u(x)|2+λ|u|4(x)}Du

5) u0(x) with distribution ∼ e−
∑

x |u(x)|2Du

Du ≡ c
∏
j

du(j) dū(j) .



Conservation laws for NLS

Mass: M(t)=
∫
R |u(t, x)|2dx

Energy: E(t)= 1
2

∫
R{|∇u(t, x)|2 + |u(t, x)|2 + 1

2 |u(t, x)|
4}dx

On the lattice Z the integrals are replaced by sums.

Conservation law : M(t) and E(t) are independent of t.
They are essential for proving global existence of solutions when
they are finite.

However, Mass and Energy are infinite for the cases above.



Motivation:

In some physical situations such as light transmission in very long
fibers, or dynamics of ocean waves it is natural to replace the finite
energy assumption by finite energy per unit volume.

Of course, one could look at very large volume of side L but then
the question is how the solution depends L.



Key Questions for NLS:

Does there exist a unique solution? Yes, for discete case. In the
continuum??

What is its growth the maximum as a function of time? Finite
volume L dependence of solution as L gets large?

Describe properties of the solution. Eg. Space-time correlations as
in Lukkarinen-Spohn.

For DNLS how to describe ensemble of breather like, localized
solutions which occur when energy/vol ≫ mass/vol ?
Micro-canonical ensemble.

When random initial condition is not given by an invariant
measure, it is more difficult to control long time behavior.



Simpler Related ODE Question:

ẍ(t) + 2λx3 + f (t)x = 0, f (t) ≥ 1 and |ḟ (t)| ≤ C .

Let
E (t) = ẋ2 + λx4 + f (t)x2, λ > 0

Then
dE (t)

dt
= Ė = ḟ x2 ≤ CE 1/2 ⇒ E (t) ≤ Ct2

Conjecture: If f(t) is smooth and periodic, E (t) is bounded - KAM.

Remark: If λ = 0 and f(t) = E+V(t) is usual Quantum potential
and u may grow exponentially fast!

Conjecture: If f(t) is smooth, quasi-periodic, then |E (t)| grows
very slowly when λ > 0.



Dynamics of NLS on Torus

The Periodic case can be formulated on a circle or torus - Td

finite energy.

Bourgain, then Colliander, Keel, Staffilani, Takaoka and Tao
proved polynomial upper bounds in time on the growth of Hs(Td)
for smooth initial conditions.

Note that H1(Td) is bounded by conservation of energy but when
s > 1 the Hs norm may grow - ”wave turbulence” unless there are
other conservation laws. Eg integrable case.



Results for Quasi-Periodic Data on R

u0(x) = a cos(x) + b cos(
√
2 x)

Tadahiro Oh: Local existence proved for quasi-periodic data and
global existence for a class of limit periodic data.

Damanik, Goldstein, Binder, Lukic:
Global existence of KdV for small amplitude data with good
Diophantine frequency. Solution bounded and almost periodic in
time. Relies of integrability of 1D KdV. Deift conjecture.

Remark: Global existence for large qp data not known
for KdV or NLS. If bound states appear in the Lax operator - analysis

breaks down - unstable“breathers” or solitons may appear .

Wei-Min Wang: There exist small amplitude solutions to 1D

NLS-type equations which are quasi-periodic in space and time. KAM

method. Applies to non-integrable equations.



Nonlinear Wave equation (NLW) on R

utt(t, x)− uxx(t, x) + u3(t, x) = 0, u(0, x), ut(0, x) ∈ C 2(R)

Finite Propagation Speed:

u(t, x0) only depends on u0(x) for |x − x0| ≤ t.

Thus the energy is effectively finite at any time.

E (u, ut) =
1

2

∫
(∂xu(t, x))

2dx+
1

2

∫
(ut(t, x))

2dx+
1

4

∫
u(t, x)4dx .

Lemma: If the data uniformly in C 2(R) then NLW has a unique
solution and |u(t, x)| ≤ Ct1/3.

Problem: NLS and KdV do not have finite propagation speed.
Rough data can propagate very rapidly.
Solution may become rough via nonlinearity.



Dynamics of Linear Schrödinger R

i u̇(t, x) = −∆u(t, x), u(0, x) = u0(x), bounded

Consider:

u0(x) =
∑
j

aje
−(x−j)2 , aj ∈ C, |aj | ≤ 1

then |u(t, x)| ≤ Ct1/2. The aj can be chosen to cancel the phases
so that you cannot improve t1/2. Similar results hold on the lattice.

If the aj are independent random variables, of mean 0 then
E[|u(t, x)|2p] ≤ C , 0 ≤ p <∞.



Dynamics of NLS on the Lattice Z

Let −∆ = ∂∗∂ be the finite difference Laplacian on Z. Here

∂f (x) = f (x + 1)− f (x), and ∂∗f (x) = f (x − 1)− f (x)

The lattice NLS is given by

i
∂

∂t
ψ(t, x) = iψ̇(t, x) = −∆ψ(t, x) + |ψ|2ψ(t, x), x ∈ Z

Proposition: If |u(0, x)| ≤ A, then |u(t, x)| ≤ C A t1/4. Moreover,
the following space average is bounded:

1

t

∑
|x−x0|≤t

|u(t, x)|4 ≤ Const. all x0 ∈ Z



Earlier Results for Anharmonic Crystal due to

Butta, Caglioti, di Ruzza, Marchioro, Pulvirenti, and others
Establish bounds on solutions with initial data which grow slowly
as |x | → ∞
Note these bounds are needed when data is given by the invariant
measure.

”Almost” finite propagation speed is proved - assuming an
invariant measure: Let fj , gk be functions localized near j , k ∈ Zd

and let {·} be Poisson bracket, then

{fj , g t
k} ≈ 0 when |j − k| ≥ Ct logp(t)

Recent work of A Vuoksenmaa on NLS allows data to grow at
polynomial rate.



Proof of Bounds on |u(t, x)|2

Define a Local Mass:

M(t) =
∑
x

|u(t, x)|2e−F (t,x), F (t, x) =

√
(x − x0)2 + 1

(2t0 − t)
, t0 ≥ t

Then using the fact that ∆ is a bounded operator on the lattice

dM(t)

dt
≤ 3M(t)

(2t0 − t)
→ M(t0) ≤ (3 ln 2)M(0) →

∑
|x−x0|≤t0

|u(t, x)|2 ≤ C
∑
x

e−FA2 ≤ CA2t.

Thus |u(t, x)|2 ≤ t



Global existence for Regularized NLS on R

Consider the regularized Hamiltonian, formally given by∫
R
{1
2
|∇u(t, x)|2 + 1

4
|uϕ(t, x)|4}dx

Where uϕ = u ⋆ ϕ(x) with ϕ smooth symmetric function eg. e−x2 .

Theorem DSS If u0(x) lies in C 4 then there is a global solution
with |u(t, x)| ≤ Ct8/3.

The proof uses a local energy norm:

E (t, x0) =

∫
R
{χ(x − x0

R
)[
1

2
|u2x |+

1

4
|uϕ|4]} dx

where χ(x) ≥ 0 is smooth and compactly supported.

Remark: The proof is more complicated because the derivative is
unbounded.



Local existence for smooth Data

Theorem DSS If u0(x) is bounded and analytic in a strip of width
3 then NLS has a unique real analytic solution for short time.

For example: analytic random or quasi-periodic data.

Idea: Apply Newton iteration to solve NLS by solving time
dependent linear equations.

R. Schippa and F. Klaus later established local well-posedness of
NLS in modulation spaces M0

∞,q.

Very recent work of Bringmann and Staffilani establishes
existence and uniqueness locally in time when the data is
uniformly in C 2(R).



Global existence of NLS with smooth data in Lp, p < ∞

Theorem DSS If u0(x) and its p/2 deriviatives lie in
Lp, 2 < p <∞ then there is a global solution to NLS.

R. Schippa and F. Klaus have established global well-posedness
in Ms

p,q for s=1, p <∞.

To prove global solutions we need to assume NLS is defocussing:
λ > 0.



Some Questions and Comments

How to improve |u(t, x)| ≤ t1/4 when u0 is random on Z?

For random iid data on a periodic box of side L,
the average local energy is bounded in time uniformly in L:

⟨|u(t, x)|4⟩ ≤ Const.

Proof by translation invariance: Expectation is independent of x.

If the data are in equilibrium then Expectation of all moments of
the local energy are can be estimated using the invariant measure
and are bounded in t.



Problem: How to analyse growth and interaction of ”breather
modes” which should occur when Energy/vol ≫ Mass/vol.

Breathers are a form of ”energy localization” arising from large ℓ4

norm with small ℓ2 norm.

In grand-canonical ensemble the Gibbs weight is e−βH+µA and
A =

∑
j |uj |2

If we set ⟨A/N⟩β,µ ≡ a and ⟨H/N⟩β,µ = h then one can show that

h ≤ Ca2 .

This means that the Grand-Canonical ensemble does not hold
when h ≫ a2. This is the regime in which breathers are expected
to dominate the dynamics.

Aubry, Iubini, Flach, Kevrekidis, Livi, Majumdar, Politi, Rasmussen ...



Happy Birthday Antti!


