How does the supercritical GMC converge?

F. Bertacco, M. Hairer

EPFL / Imperial College London

Antti's birthday conference, 4 September 2024

Gaussian Multiplicative Chaos

Basic construction: Take a log-correlated Gaussian field X:

 $\mathbf{E}X(x)X(y) = g(|x-y|)$

with $g(r) = |\log r| + \mathcal{O}(1)$ as $r \to 0$. (Example: massive GFF.) Mollifier ϱ_{ε} , set $X^{(\varepsilon)} = \varrho_{\varepsilon} \star X$ and consider

$$\mu_{\varepsilon}^{(\gamma)}(dx) = \varepsilon^{\gamma^2/2} e^{\gamma X^{(\varepsilon)}(x)} \, dx$$

Kahane '85: for $\gamma \in (0, \sqrt{2d})$, the limit $\lim_{\varepsilon \to 0} \mu_{\varepsilon}^{(\gamma)}$ exists in probability and is non-trivial. For $\gamma \ge \sqrt{2d}$, it vanishes. Very robust (Shamov '16, etc).

Gaussian Multiplicative Chaos

Basic construction: Take a log-correlated Gaussian field X:

 $\mathbf{E}X(x)X(y) = g(|x - y|)$

with $g(r) = |\log r| + O(1)$ as $r \to 0$. (Example: massive GFF.) Mollifier ϱ_{ε} , set $X^{(\varepsilon)} = \varrho_{\varepsilon} \star X$ and consider

$$\mu_{\varepsilon}^{(\gamma)}(dx) = \varepsilon^{\gamma^2/2} e^{\gamma X^{(\varepsilon)}(x)} \, dx$$

Kahane '85: for $\gamma \in (0, \sqrt{2d})$, the limit $\lim_{\varepsilon \to 0} \mu_{\varepsilon}^{(\gamma)}$ exists in probability and is non-trivial. For $\gamma \geq \sqrt{2d}$, it vanishes. Very robust (Shamov '16, etc).

Gaussian Multiplicative Chaos

Basic construction: Take a log-correlated Gaussian field X:

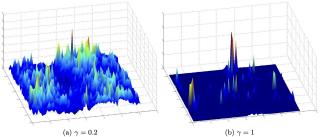
 $\mathbf{E}X(x)X(y) = g(|x - y|)$

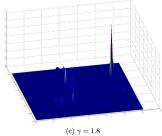
with $g(r) = |\log r| + O(1)$ as $r \to 0$. (Example: massive GFF.) Mollifier ϱ_{ε} , set $X^{(\varepsilon)} = \varrho_{\varepsilon} \star X$ and consider

$$\mu_{\varepsilon}^{(\gamma)}(dx) = \varepsilon^{\gamma^2/2} e^{\gamma X^{(\varepsilon)}(x)} \, dx$$

Kahane '85: for $\gamma \in (0, \sqrt{2d})$, the limit $\lim_{\varepsilon \to 0} \mu_{\varepsilon}^{(\gamma)}$ exists in probability and is non-trivial. For $\gamma \geq \sqrt{2d}$, it vanishes. Very robust (Shamov '16, etc).

Some pictures (Rhodes & Vargas)





For $\gamma = \sqrt{2d}$, convergence still holds with slightly different renormalisation:

$$\mu_{\varepsilon}'(dx) = \sqrt{|\log \varepsilon|} \varepsilon^d e^{\sqrt{2d}X^{(\varepsilon)}(x)} \, dx$$

Convergence more delicate, but still in probability. One has $\mu' \propto \frac{d}{d\gamma} \mu^{(\gamma)}|_{\gamma=\sqrt{2d}}$.

What about $\gamma > \sqrt{2d}$ and what is special about $\sqrt{2d}$? Recall max of N iid $\mathcal{N}(0,1)$ vars about $\sqrt{2\log N}$.

Rough cartoon for $X^{(\varepsilon)}$ is about ε^{-d} iid $\mathcal{N}(0, |\log \varepsilon|)$ vars, so maximum around $\sqrt{|\log \varepsilon|} \sqrt{2 \log \varepsilon^{-d}} = \sqrt{2d} |\log \varepsilon|$. Contribution of each large peak to $\int e^{\gamma X^{(\varepsilon)}(x)} dx$ about $\varepsilon^d e^{\gamma \sqrt{2d} |\log \varepsilon|} = \varepsilon^{d-\gamma \sqrt{2d}}$. Balances $\varepsilon^{-\gamma^2/2}$ when $\gamma = \sqrt{2d}$.

For $\gamma = \sqrt{2d}$, convergence still holds with slightly different renormalisation:

$$\mu_{\varepsilon}'(dx) = \sqrt{|\log \varepsilon|} \varepsilon^d e^{\sqrt{2d}X^{(\varepsilon)}(x)} \, dx$$

Convergence more delicate, but still in probability. One has $\mu' \propto \frac{d}{d\gamma} \mu^{(\gamma)}|_{\gamma = \sqrt{2d}}$.

What about $\gamma > \sqrt{2d}$ and what is special about $\sqrt{2d}$? Recall max of N iid $\mathcal{N}(0,1)$ vars about $\sqrt{2\log N}$.

Rough cartoon for $X^{(\varepsilon)}$ is about ε^{-d} iid $\mathcal{N}(0, |\log \varepsilon|)$ vars, so maximum around $\sqrt{|\log \varepsilon|} \sqrt{2 \log \varepsilon^{-d}} = \sqrt{2d} |\log \varepsilon|$. Contribution of each large peak to $\int e^{\gamma X^{(\varepsilon)}(x)} dx$ about $\varepsilon^d e^{\gamma \sqrt{2d} |\log \varepsilon|} = \varepsilon^{d-\gamma \sqrt{2d}}$. Balances $\varepsilon^{-\gamma^2/2}$ when $\gamma = \sqrt{2d}$.

For $\gamma = \sqrt{2d}$, convergence still holds with slightly different renormalisation:

$$\mu_{\varepsilon}'(dx) = \sqrt{|\log \varepsilon|} \varepsilon^d e^{\sqrt{2d}X^{(\varepsilon)}(x)} \, dx$$

Convergence more delicate, but still in probability. One has $\mu' \propto \frac{d}{d\gamma} \mu^{(\gamma)}|_{\gamma=\sqrt{2d}}$. What about $\gamma > \sqrt{2d}$ and what is special about $\sqrt{2d}$? Recall max of N iid $\mathcal{N}(0,1)$ vars about $\sqrt{2\log N}$. Rough cartoon for $X^{(\varepsilon)}$ is about ε^{-d} iid $\mathcal{N}(0,|\log \varepsilon|)$ vars, so maximum around $\sqrt{|\log \varepsilon|} \sqrt{2\log \varepsilon^{-d}} = \sqrt{2d}|\log \varepsilon|$. Contribution of each large peak to $\int e^{\gamma X^{(\varepsilon)}(x)} dx$ about $\varepsilon^{-d} e^{\gamma \sqrt{2d}}|\log \varepsilon| = e^{d-\gamma \sqrt{2d}}$. Balance $\varepsilon^{-\gamma^2/2}$ when $\alpha = \sqrt{2d}$.

For $\gamma = \sqrt{2d}$, convergence still holds with slightly different renormalisation:

$$\mu_{\varepsilon}'(dx) = \sqrt{|\log \varepsilon|} \varepsilon^d e^{\sqrt{2d}X^{(\varepsilon)}(x)} \, dx$$

Convergence more delicate, but still in probability. One has $\mu' \propto \frac{d}{d\gamma} \mu^{(\gamma)}|_{\gamma=\sqrt{2d}}$. What about $\gamma > \sqrt{2d}$ and what is special about $\sqrt{2d}$? Recall max of N iid $\mathcal{N}(0,1)$ vars about $\sqrt{2\log N}$.

Rough cartoon for $X^{(\varepsilon)}$ is about ε^{-d} iid $\mathcal{N}(0, |\log \varepsilon|)$ vars, so maximum around $\sqrt{|\log \varepsilon|} \sqrt{2 \log \varepsilon^{-d}} = \sqrt{2d} |\log \varepsilon|$. Contribution of each large peak to $\int e^{\gamma X^{(\varepsilon)}(x)} dx$ about $\varepsilon^d e^{\gamma \sqrt{2d} |\log \varepsilon|} = \varepsilon^{d-\gamma \sqrt{2d}}$. Balances $\varepsilon^{-\gamma^2/2}$ when $\gamma = \sqrt{2d}$.

For $\gamma = \sqrt{2d}$, convergence still holds with slightly different renormalisation:

$$\mu_{\varepsilon}'(dx) = \sqrt{|\log \varepsilon|} \varepsilon^d e^{\sqrt{2d}X^{(\varepsilon)}(x)} \, dx$$

Convergence more delicate, but still in probability. One has $\mu' \propto \frac{d}{d\gamma} \mu^{(\gamma)}|_{\gamma=\sqrt{2d}}$. What about $\gamma > \sqrt{2d}$ and what is special about $\sqrt{2d}$? Recall max of N iid $\mathcal{N}(0,1)$ vars about $\sqrt{2\log N}$.

Rough cartoon for $X^{(\varepsilon)}$ is about ε^{-d} iid $\mathcal{N}(0, |\log \varepsilon|)$ vars, so maximum around $\sqrt{|\log \varepsilon|} \sqrt{2 \log \varepsilon^{-d}} = \sqrt{2d} |\log \varepsilon|$. Contribution of each large peak to $\int e^{\gamma X^{(\varepsilon)}(x)} dx$ about $\varepsilon^{d} e^{\gamma \sqrt{2d} |\log \varepsilon|} = \varepsilon^{d-\gamma \sqrt{2d}}$. Balances $\varepsilon^{-\gamma^{2}/2}$ when $\gamma = \sqrt{2d}$.

For $\gamma = \sqrt{2d}$, convergence still holds with slightly different renormalisation:

$$\mu_{\varepsilon}'(dx) = \sqrt{|\log \varepsilon|} \varepsilon^d e^{\sqrt{2d}X^{(\varepsilon)}(x)} \, dx$$

Convergence more delicate, but still in probability. One has $\mu' \propto \frac{d}{d\gamma} \mu^{(\gamma)}|_{\gamma=\sqrt{2d}}$. What about $\gamma > \sqrt{2d}$ and what is special about $\sqrt{2d}$? Recall max of N iid $\mathcal{N}(0,1)$ vars about $\sqrt{2\log N}$.

Rough cartoon for $X^{(\varepsilon)}$ is about ε^{-d} iid $\mathcal{N}(0, |\log \varepsilon|)$ vars, so maximum around $\sqrt{|\log \varepsilon|}\sqrt{2\log \varepsilon^{-d}} = \sqrt{2d}|\log \varepsilon|$. Contribution of each large peak to $\int e^{\gamma X^{(\varepsilon)}(x)} dx$ about $\varepsilon^d e^{\gamma \sqrt{2d}|\log \varepsilon|} = \varepsilon^{d-\gamma \sqrt{2d}}$. Balances $\varepsilon^{-\gamma^2/2}$ when $\gamma = \sqrt{2d}$.

For $\gamma > \sqrt{2d}$, consider the Poisson point process Γ on $\mathbf{R}^d \times \mathbf{R}_+$ with intensity measure $\mu'(dx)s^{-1-\alpha}ds$ with $\alpha = \frac{\sqrt{2d}}{\gamma}$. Then (Madaule, Rhodes, Vargas '16),

$$\mu_{\varepsilon}^{(\gamma)}(dx) = |\log \varepsilon|^{\frac{3}{2\alpha}} \varepsilon^{\gamma\sqrt{2d}-d} e^{\gamma X^{(\varepsilon)}(x)} dx$$

converges stably for some c > 0 to the atomic measure $PP_{\alpha}(\mu') = c \sum_{(x,s)\in\Gamma} s\delta_x$. No convergence in probability!

Question: Does the measure-valued process $\mu_{\varepsilon,t}^{(\gamma)} = \mu_{\varepsilon e^{-t}}^{(\gamma)}$ converge to a non-trivial limit? What does it look like?

For $\gamma > \sqrt{2d}$, consider the Poisson point process Γ on $\mathbf{R}^d \times \mathbf{R}_+$ with intensity measure $\mu'(dx)s^{-1-\alpha}ds$ with $\alpha = \frac{\sqrt{2d}}{\gamma}$. Then (Madaule, Rhodes, Vargas '16),

$$\mu_{\varepsilon}^{(\gamma)}(dx) = |\log \varepsilon|^{\frac{3}{2\alpha}} \varepsilon^{\gamma\sqrt{2d}-d} e^{\gamma X^{(\varepsilon)}(x)} dx$$

converges stably for some c > 0 to the atomic measure $PP_{\alpha}(\mu') = c \sum_{(x,s) \in \Gamma} s \delta_x$. No convergence in probability!

Question: Does the measure-valued process $\mu_{\varepsilon,t}^{(\gamma)} = \mu_{\varepsilon e^{-t}}^{(\gamma)}$ converge to a non-trivial limit? What does it look like?

For $\gamma > \sqrt{2d}$, consider the Poisson point process Γ on $\mathbf{R}^d \times \mathbf{R}_+$ with intensity measure $\mu'(dx)s^{-1-\alpha}ds$ with $\alpha = \frac{\sqrt{2d}}{\gamma}$. Then (Madaule, Rhodes, Vargas '16),

$$\mu_{\varepsilon}^{(\gamma)}(dx) = |\log \varepsilon|^{\frac{3}{2\alpha}} \varepsilon^{\gamma\sqrt{2d}-d} e^{\gamma X^{(\varepsilon)}(x)} dx$$

converges stably for some c > 0 to the atomic measure $PP_{\alpha}(\mu') = c \sum_{(x,s) \in \Gamma} s \delta_x$. No convergence in probability!

Question: Does the measure-valued process $\mu_{\varepsilon,t}^{(\gamma)} = \mu_{\varepsilon e^{-t}}^{(\gamma)}$ converge to a non-trivial limit? What does it look like?

For $\gamma > \sqrt{2d}$, consider the Poisson point process Γ on $\mathbf{R}^d \times \mathbf{R}_+$ with intensity measure $\mu'(dx)s^{-1-\alpha}ds$ with $\alpha = \frac{\sqrt{2d}}{\gamma}$. Then (Madaule, Rhodes, Vargas '16),

$$\mu_{\varepsilon}^{(\gamma)}(dx) = |\log \varepsilon|^{\frac{3}{2\alpha}} \varepsilon^{\gamma\sqrt{2d}-d} e^{\gamma X^{(\varepsilon)}(x)} dx$$

converges stably for some c > 0 to the atomic measure $PP_{\alpha}(\mu') = c \sum_{(x,s) \in \Gamma} s \delta_x$. No convergence in probability!

Question: Does the measure-valued process $\mu_{\varepsilon,t}^{(\gamma)} = \mu_{\varepsilon e^{-t}}^{(\gamma)}$ converge to a non-trivial limit? What does it look like?

*-scale invariant fields

A special type of log-correlated fields:

$$\mathbf{E}X_t(x)X_s(y) = \int_0^{s\wedge t} K(e^r(x-y)) \, dr \, , \quad K(0) = 1 \, .$$

Has independent increments $X_{s,t}$ and $X_{s,t}(\cdot) \stackrel{\text{law}}{=} X_{0,t-s}(e^s \cdot)$. Think of $X_t = X^{(\varepsilon)}$ with $\varepsilon = e^{-t}$.

To understand $e^{\gamma X_t}$, write it as $X_t = X_s + X_{s,t}$ for $1 \ll s \ll t$.

*-scale invariant fields

A special type of log-correlated fields:

$$\mathbf{E}X_t(x)X_s(y) = \int_0^{s \wedge t} K(e^r(x-y)) \, dr \, , \quad K(0) = 1 \, .$$

Has independent increments $X_{s,t}$ and $X_{s,t}(\cdot) \stackrel{\text{law}}{=} X_{0,t-s}(e^s \cdot)$. Think of $X_t = X^{(\varepsilon)}$ with $\varepsilon = e^{-t}$.

To understand $e^{\gamma X_t}$, write it as $X_t = X_s + X_{s,t}$ for $1 \ll s \ll t$.

 $X_{s,t}$ behaves roughly like e^{ds} copies of X_{t-s} , rescaled by e^s . Maximum M of X_{t-s} (on order 1 region) about $M_* \approx \sqrt{2d}(t-s)$ (plus log-correction) with tails $\mathbf{P}(M \ge M_* + K) \approx \exp(-\sqrt{2d}K)$.

Yields highest local maxima of order $\sqrt{2d}(t-s) + \sqrt{d/2s}$ and heights distributed according to $\text{Exp}(\sqrt{2d})$.

Since $X_{s,t}$ has correlation length of order e^{-t} , each local maximum gives a contribution to $\int e^{\gamma X_{s,t}}$ of order e^{-dt} .

Suggests that, modulo logs, $e^{(d-\sqrt{2d}\gamma)t+\sqrt{d/2\gamma s}}e^{\gamma X_{s,t}}$ is close to $ext{PP}_{lpha}(dx)$.

 $X_{s,t}$ behaves roughly like e^{ds} copies of X_{t-s} , rescaled by e^s . Maximum M of X_{t-s} (on order 1 region) about $M_* \approx \sqrt{2d}(t-s)$ (plus log-correction) with tails $\mathbf{P}(M \ge M_* + K) \approx \exp(-\sqrt{2d}K)$.

Yields highest local maxima of order $\sqrt{2d}(t-s) + \sqrt{d/2s}$ and heights distributed according to $\text{Exp}(\sqrt{2d})$.

Since $X_{s,t}$ has correlation length of order e^{-t} , each local maximum gives a contribution to $\int e^{\gamma X_{s,t}}$ of order e^{-dt} .

Suggests that, modulo logs, $e^{(d-\sqrt{2d}\gamma)t+\sqrt{d/2}\gamma s}e^{\gamma X_{s,t}}$ is close to $ext{PP}_{lpha}(dx)$.

 $X_{s,t}$ behaves roughly like e^{ds} copies of X_{t-s} , rescaled by e^s . Maximum M of X_{t-s} (on order 1 region) about $M_* \approx \sqrt{2d}(t-s)$ (plus log-correction) with tails $\mathbf{P}(M \ge M_* + K) \approx \exp(-\sqrt{2d}K)$.

Yields highest local maxima of order $\sqrt{2d}(t-s) + \sqrt{d/2s}$ and heights distributed according to $\text{Exp}(\sqrt{2d})$.

Since $X_{s,t}$ has correlation length of order e^{-t} , each local maximum gives a contribution to $\int e^{\gamma X_{s,t}}$ of order e^{-dt} .

Suggests that, modulo logs, $e^{(d-\sqrt{2d}\gamma)t+\sqrt{d/2\gamma s}}e^{\gamma X_{s,t}}$ is close to $ext{PP}_{lpha}(dx)$.

 $X_{s,t}$ behaves roughly like e^{ds} copies of X_{t-s} , rescaled by e^s . Maximum M of X_{t-s} (on order 1 region) about $M_* \approx \sqrt{2d}(t-s)$ (plus log-correction) with tails $\mathbf{P}(M \ge M_* + K) \approx \exp(-\sqrt{2d}K)$.

Yields highest local maxima of order $\sqrt{2d}(t-s) + \sqrt{d/2s}$ and heights distributed according to $\text{Exp}(\sqrt{2d})$.

Since $X_{s,t}$ has correlation length of order e^{-t} , each local maximum gives a contribution to $\int e^{\gamma X_{s,t}}$ of order e^{-dt} .

Suggests that, modulo logs, $e^{(d-\sqrt{2d}\gamma)t+\sqrt{d/2}\gamma s}e^{\gamma X_{s,t}}$ is close to $PP_{\alpha}(dx)$.

Modulations of stable PPP's

Lemma: For any positive function f, one has $f PP_{\alpha}(dx) = PP_{\alpha}(f^{\alpha} dx)$.

Recall
$$\alpha = \frac{\sqrt{2d}}{\gamma}$$
, so that
 $e^{(d-\sqrt{2d}\gamma)t}e^{\gamma X_t} \approx e^{(d-\sqrt{2d}\gamma)t+\sqrt{d/2}\gamma s}e^{\gamma X_{s,t}}(e^{-ds}e^{\sqrt{2d}X_s})^{1/\alpha}$
 $\approx \operatorname{PP}_{\alpha}(e^{-ds}e^{\sqrt{2d}X_s}) \approx \operatorname{PP}_{\alpha}(\mu')$.

Explains what the limit looks like.

The process Z

Based on a suitable "cluster process" describing the behaviour of X_t for very large t near its largest local maxima.

The view from the top

Construction of $\Upsilon_t = X_t(e^{-t} \cdot)$, viewed from a local maximum, as $t \to \infty$.

- 1. Condition on $\Upsilon_t(0) \approx \sqrt{2dt}$, yields Gaussian field Υ_∞ with covariance $\mathfrak{a}(x) + \mathfrak{a}(y) \mathfrak{a}(x-y)$ and mean $-\sqrt{2d\mathfrak{a}}$.
- 2. Condition Υ_{∞} on $\sup_{x} \Upsilon_{\infty}(x) \leq \lambda$, yields $\tilde{\Upsilon}_{\lambda}$.
- 3. There is a unique (in law) field Ψ with maximum 0 at 0 such that

$$\mathbf{E}\big[\mathcal{F}(\tilde{\Upsilon}_{\lambda})\big] \propto \mathbf{E}\Big[\int_{\mathbf{R}^d} \mathcal{F}(\tau_x \Psi) e^{\sqrt{2d}\Psi(x)} \mathbf{1}_{\{\Psi(x) \ge -\lambda\}} dx\Big] \ .$$

(Independent of λ !)

Thanks for your attention

Happy birthday Antti!

