Introduction

Surface models

Tree models

Outlook

Random Planar Surfaces and Trees

Bergfinnur Durhuus University of Copenhagen

Helsinki, 6 September 2024

1. Contents

Introduction

Surface models

Tree models

Outlook

a) Are there any viable discrete approximations to string theory path integrals?

Path of string γ_t = surface S:

- Hypercubic lattice models
- Dynamically triangulated models
- Scaling limits appearance of tree-like structures.
- Relation to 2D-gravity.
- b) Ensembles of infinite planar trees
- Local limits of generic trees
- Uniform tree and 2D-gravity
- Non-generic trees with size- and height-dependent weights.

2. Surface models Hypercubic surfaces in \mathbb{Z}^d

Introduction

Surface models

Tree models

Outlook

 $S(\gamma_1, \ldots, \gamma_k) = \{ \text{ surfaces in } \mathbb{Z}^d \text{ obtained by gluing elementary plaquettes along edges, having topology of } S^2 \text{ with } k \text{ holes } \gamma_1, \ldots, \gamma_k \}.$

|S| = area of S = number of plaquettes in S.

•
$$\sharp \{ S \in \mathcal{S}(\gamma_1, \dots, \gamma_k) \mid |S| = A \} \sim \operatorname{cst} A^{\gamma+k-3} e^{\beta_0 A} \quad (A \to \infty)$$

Define k-loop function: $G_{\beta}(\gamma_1, \dots, \gamma_k) = \sum_{S \in S(\gamma_1, \dots, \gamma_k)} e^{-\beta|S|}, \quad \beta > \beta_0.$

Mass: $m(\beta) = -\lim_{r \to \infty} r^{-1} \log G_{\beta}(p_0, p_r)$

String tension:
$$\tau(\beta) = -\lim_{R \to \infty} R^{-2} \log G_{\beta}(\gamma_{R \times R})$$

Tree models

Outlook

Surface

$$\begin{array}{ll} \mbox{Scaling limit requires } m(\beta) \to 0 \mbox{ as } \beta \to \beta_0: \\ m(\beta) \sim (\beta - \beta_0)^\nu & (\beta \to \beta_0) \\ \mbox{Susceptibility:} & \chi(\beta) = \sum_p G_\beta(p_0, p) \end{array}$$

• If $\chi(\beta)$ diverges at β_0 then $m(\beta)$ vanishes at β_0 .

Conjecture: $\chi(\beta)$ diverges at β_0 for all $d \ge 2$. Numerical results confirm this for β_0 for d = 2, and d = 3. Mean field approximation supports it for large d.

Continuum k-point function: Choose $\beta(a)$, a =lattice spacing, such that $a^{-1}m(\beta(a)) = m_{\text{ph}} > 0$ and define, $x_1, \ldots, x_k \in \mathbb{R}^d$,

$$G(x_1,\ldots,x_k)=\lim_{a\to 0}a^{-\alpha_{k,d}}G_{\beta(a)}(p_{a^{-1}x_1},\ldots,p_{a^{-1}x_k}).$$

Introduction

Surface models

Tree models

Outlook

Theorem (D-Fröhlich-Jonsson, 1984) If $\chi(\beta)$ diverges at β_0 , then $\nu = \frac{1}{4}$ and $G(x_1, x_2)$ exists with $\alpha_{2,d} = d - 2$, and it equals the standard Euclidean propagator:

$$\hat{G}(p) = rac{\operatorname{cst.}}{p^2 + m_{ph}^2}, \quad p \in \mathbb{R}^d.$$

• If $\chi(\beta)$ diverges at β_0 then $\tau(\beta) \to \tau(\beta_0) > 0$ as $\beta \to \beta_0$ and $\tau(\beta) - \tau(\beta_0) \sim (\beta - \beta_0)^{\frac{1}{2}}$.

Consequently, the continuum string tension

$$au_{ph} = \lim_{a o 0} a^{-2} au(eta(a)) = \infty$$
 ,

indicating that tree-like surfaces dominate the scaling limit.

• Hausdorff dimension $d_H = \nu^{-1} = 4$.

Conjecture:

$$\sharp\{S \in \mathcal{S}(p) \mid |S| = A\} \sim \operatorname{cst} A^{-3/2} e^{\beta_0 A} \qquad (A \to \infty)$$

for all $d \geq 2$.

Dynamically triangulated surfaces

• Replace $S(\gamma_1, \ldots, \gamma_k)$ by triangulated surfaces in \mathbb{R}^d with quadratic dependence of action on embedding coordinates.

- Explicit proof that string tension does not vanish at β_0 .
- Can be (formally) extended to d ≤ 1. For d = 0 one obtains a model of (abstract) two-dimensional (simplicial) complexes, believed to be equivalent to 2D (Liouville) quantum gravity.
 Combinatorial correspondences between two-dimensional complexes and trees turn out important for carrying out calculations (... G. Schaeffer, ...) and as a theoretical tool (... J.-F. Le Gall, ...). Example (CDT):

Figure: Causal triangulation of the disk and the corresponding tree.

Introduction

Surface models

Tree models

Outlook

3. Tree models

Generic planar trees

Surface models

Tree models

Outlook

 $\mathcal{T}_N = \{ \text{planar rooted trees with } N \text{ edges} \}; \text{ root } r \text{ of degree 1}$ $T \in \mathcal{T}_N : \sigma_i = \text{degree of vertex } i \in T$ $B_R(T) = \text{ball of radius } R \text{ in } T \text{ around the root}$

$$\begin{split} \mathcal{T} &= \bigcup_{N \geq 1} \mathcal{T}_N \cup \mathcal{T}_\infty \\ d(\mathcal{T}, \mathcal{T}') &= \inf\{\frac{1}{R} \mid B_R(\mathcal{T}) = B_R(\mathcal{T}')\} \\ (\mathcal{T}, d), \text{complete separable metric space} \end{split}$$

Weak convergence of measures: $\mu_N \to \mu$ if $\int f d\mu_N \to \int f d\mu$ as $\mathbb{N} \to \infty$, f bounded continuous fct. on \mathcal{T} Equivalently: $\mu_N(\mathcal{B}_a(\mathcal{T})) \to \mu(\mathcal{B}_a(\mathcal{T})), \mathcal{T} \in \mathcal{T}, a > 0$, where $\mathcal{B}_a(\mathcal{T})$ is the ball of radius a around \mathcal{T} . Surface models

Tree models

Outlook

Branching (or offspring) probabilities: $p_n \ge 0, n = 0, 1, 2, ... \sum_n p_n = 1.$

• Corresponding Galton-Watson branching process is concentrated on finite trees if avarage offspring $m = \sum_n np_n$ equals 1 (critical case) or is < 1 (subcritical case).

Finite size partition function: $Z_N = \sum_{T \in \mathcal{T}_N} \prod_{i \in T \setminus r} p_{\sigma_i - 1}$ Generating function: $Z(g) = \sum_{N \ge 1} Z_N g^N$ Finite size measure: $\mu_N(T) = \frac{\prod_{i \in T \setminus r} p_{\sigma_i - 1}}{Z_N}, \ T \in \mathcal{T}_N$

Example (uniform tree): $p_n = 2^{-(n+1)}, n \ge 0,$ $\prod_{i \neq r} p_{\sigma_i - 1} = 2^{\sum_{i \neq r} \sigma_i} = 2^{-2|\mathcal{T}| + 1}, \qquad Z_N = 2^{-2N+1} \sharp \mathcal{T}_N,$ $\mu_N(\mathcal{T}) = \frac{1}{\sharp \mathcal{T}_N}, \ \mathcal{T} \in \mathcal{T}_N$ Basic equation for partition functions:

Introduction

Surface models

Tree models

Outlook

$$Z(g) = g f(Z(g))$$
where $f(z) = \sum_{n=0}^{\infty} p_n z^n$

$$= \int_{r}^{p_0} + \sum_{n \ge 1} \int_{r}^{p_n} p_n$$

 $y = \frac{1}{8}Z$

Z(g)

Generic assumption:

a) (p_n) is critical, i.e. ∑_{n=0}[∞] np_n = 1 (valid for uniform tree)
b) Convergence radius for f is ρ > 1 (ρ = 2 for uniform tree)

Then

$$Z(g) = 1 - \sqrt{\frac{2}{f''(1)}} (1 - g)^{\frac{1}{2}} + O(1 - g)$$

$$Z_N = (2\pi f''(1))^{-\frac{1}{2}} N^{-\frac{3}{2}} (1 + O(N^{-1}) (N \to \infty))$$

Surface models

Tree models

Outlook

Theorem (D-Jonsson-Wheater, 2007) $\mu_N \rightarrow \mu$ as $N \rightarrow \infty$ where μ is concentrated on one-ended trees whose branches at spine vertices s_i are i.i.d. Galton-Watson trees with offspring probabilities p_n and σ_{s_i} are i.i.d. with probability $(\sigma_{s_i} - 1)p_{\sigma_{s_i}-1}, \sigma_{s_i} \geq 2.$

- Hausdorff dimension d_h : $|B_R(T)| \sim R^{d_h}$ for $R o \infty$
- Spectral dimension d_s : $q_{2n}(T) \sim n^{-\frac{d_s}{2}}$ as $n \to \infty$, where q_{2n} is the probability that simple random walk on Tstarting at r returns to r after 2n steps.

Theorem (D-Jonsson-Wheater, 2007) For any generic tree $d_h = 2$ and $d_s = \frac{4}{3}$ hold μ - a.s.

• The local limit of causal dynamical triangulations exists and $d_h = 2$ almost surely. Also known that $d_s = 2$ almost surely.

Trees with height dependent weights (with M. Unel, 2023) $\mathcal{T}_{m,N} = \{ \text{planar rooted trees of size } N \text{ and height } h(T) \leq m \}$ $A_m N = \sharp \mathcal{T}_m N$

Tree models

 $\mu_N^{(\zeta)}(T) = \frac{e^{\zeta h(T)}}{Z_N^{(\zeta)}}, \ T \in \mathcal{T}_N,$ Define where $Z_{N}^{(\zeta)} = \sum_{T \in \mathcal{T}_{N}} e^{-\zeta h(T)} = \sum_{m=1}^{\infty} e^{-\zeta m} (A_{m,N} - A_{m-1,N})$

Note For $\zeta = 0$ the measure $\mu^{(0)}$ coincides with the uniform measure on $\mathcal{T}_{\mathcal{N}}$.

We have:

$$A_{m,N} = 4^N \sum_{k=1}^{\lfloor rac{m}{2}
floor} rac{1}{m+1} \tan^2 rac{\pi k}{m+1} \Big(1 + an rac{\pi k}{m+1} \Big)^{-N}, \ N \ge 2$$

For $\zeta > 0$, the asymptotic form of $Z_{N}^{(\zeta)}$ is obtained by a saddlepoint approximation:

$$egin{split} Z_{\mathcal{N}}^{(\zeta)} &= (e^{\zeta}-1)\sqrt{rac{\pi}{B}rac{\zeta}{2}}e^{-AN^{rac{1}{3}}}N^{-rac{5}{6}}4^{N}(1+N^{-\delta})~(\delta>0)\ A &= 3\left(rac{\pi\zeta}{2}
ight)^{rac{2}{3}}, \qquad B &= 3\left(rac{\zeta^{2}}{4\pi}
ight)^{rac{2}{3}} \end{split}$$

Surface

Tree models

Outlook

Theorem Assume $\zeta > 0$. Then $\mu_N^{(\zeta)} \to \mu^{(\zeta)}$ as $N \to \infty$, where $\mu^{(\zeta)}$ is concentrated on \mathcal{T}_{∞} and determined by $\mu^{(\zeta)}(\mathcal{B}_{\frac{1}{r}}(\mathcal{T})) = e^{-\zeta(r-1)}4^{-|\mathcal{T}|}2^{K+1}\sum_{R=1}^{K} {K \choose R} \frac{\mu^{R-1}}{(R-1)!}$

for any finite tree T of height r and with K vertices at height r.

Description of $\mu^{(\zeta)}$:

The *spine* of $T \in \mathcal{T}_{\infty}$ is defined as the subtree of T spanned by vertices of *infinite type*, i.e. vertices having infinitely many descendants in T.

Let $\mathcal{T}^s = \{T \in \mathcal{T}_\infty \mid \text{all vertices in } T \text{ are of infinite type}\}$, which is a closed subset of \mathcal{T} . The spine map $\chi : T \to T^s$ is Borel-measurable. Set $\tilde{\mu}^{(\zeta)}(E) = \mu^{(\zeta)}(\chi^{-1}(E)), E \subseteq \mathcal{T}^s$. Theorem $\tilde{\mu}^{(\zeta)}$ is a Poisson tree defined by $\tilde{\mu}^{(\zeta)}(\mathcal{B}^s_{\frac{1}{r}}(T)) = e^{-\zeta(r-1)}\frac{\zeta^{R-1}}{(R-1)!}, r \ge 0$

for any finite tree T of height r with R leaves, all at height r.

Corollary The random variables $\tau_r(T^s) = |B_{r+1}(T^s)| + |B_{r-1}(T^s)| - 2|B_r(T^s)|$ are i.i.d. with distribution $\tilde{\mu}^{(\zeta)}(\tau_r=n)=e^{-\zeta\frac{\zeta^n}{n!}},\quad n>0.$

Tree models

• This implies
$$d_h(T^s) = 2$$
 for $\tilde{\mu}^{(\zeta)}$ - a.e. T^s .

Vertex *i* in T^s has σ_i angular sectors:

 $\bigvee_{\alpha_i = 1}^{\alpha_i = 4} \qquad \qquad \text{Vertex } i \text{ of degree 4} \\ \text{with 4 angular sectors.}$

Theorem $\mu^{(\zeta)}$ is obtained from $\tilde{\mu}^{(\zeta)}$ by decorating T^s with branches T_{i,α_i} , $\alpha_i = 1, \ldots, \sigma_i$, in each angular sector, independently and identically distributed as Galton-Watson trees with offspring probability $p_n = 2^{-(n+1)}$.

Surface

Tree models

Outlook

Theorem
$$d_h(T) = 3$$
 holds $\mu^{(\zeta)}$ - a.s

The case $\zeta < 0$: $\lim_{N\to\infty} \mu_N^{(\zeta)} = \mu^{(\zeta)}$ exists and is concentrated on single-spine trees with i.i.d. subcritical branches. In particular, $d_h(T) = 1$ for $\mu^{(\zeta)}$ - a.e. T.

Surface

Tree models

Outlook

4. Outlook

- Spectral dimensions of $\mu^{(\zeta)}$ and $\tilde{\mu}^{(\zeta)}$ for $\zeta > 0$ not known.
- Generalisations: introduce height-dependence for general generic GW-trees.
- Implications for randomly triangulated models, in particular CDT coupled to e.g. spin systems or to loop models.