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1. Contents

a) Are there any viable discrete approximations to string
theory path integrals?

Path of string γt = surface S:

γ0
γ1

S

• Hypercubic lattice models
• Dynamically triangulated models
• Scaling limits - appearance of tree-like structures.
• Relation to 2D-gravity.

b) Ensembles of infinite planar trees
• Local limits of generic trees
• Uniform tree and 2D-gravity
• Non-generic trees with size- and height-dependent weights.
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2. Surface models
Hypercubic surfaces in Zd

S(γ1, . . . , γk) = { surfaces in Zd obtained by gluing elementary
plaquettes along edges, having topology of S2 with k holes
γ1, . . . , γk}.
|S| = area of S = number of plaquettes in S.

• ]{S ∈ S(γ1, . . . , γk) | |S| = A} ∼ cst.Aγ+k−3eβ0A (A→∞)

Define k-loop function:
Gβ(γ1, . . . , γk) =

∑
S∈S(γ1,...,γk) e−β|S| , β > β0.

Mass: m(β) = − limr→∞ r−1 log Gβ(p0, pr )

p0 pr

S

r
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String tension: τ(β) = − limR→∞ R−2 log Gβ(γR×R)

γR×RR

R

Scaling limit requires m(β)→ 0 as β → β0:
m(β) ∼ (β − β0)ν (β → β0)

Susceptibility: χ(β) =
∑

p Gβ(p0, p)

• If χ(β) diverges at β0 then m(β) vanishes at β0.

Conjecture: χ(β) diverges at β0 for all d ≥ 2. Numerical
results confirm this for β0 for d = 2, and d = 3. Mean field
approximation supports it for large d .

Continuum k-point function: Choose β(a), a = lattice spacing,
such that a−1m(β(a)) = mph > 0 and define, x1, . . . , xk ∈ Rd ,

G(x1, . . . , xk) = lim
a→0

a−αk,d Gβ(a)(pa−1x1 , . . . , pa−1xk ) .
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Theorem (D-Fröhlich-Jonsson, 1984) If χ(β) diverges at β0,
then ν = 1

4 and G(x1, x2) exists with α2,d = d − 2, and it
equals the standard Euclidean propagator:

Ĝ(p) = cst.
p2+m2

ph
, p ∈ Rd .

• If χ(β) diverges at β0 then τ(β)→ τ(β0) > 0 as β → β0 and
τ(β)− τ(β0) ∼ (β − β0) 1

2 .
Consequently, the continuum string tension

τph = lima→0 a−2τ(β(a)) =∞,
indicating that tree-like surfaces dominate the scaling limit.
• Hausdorff dimension dH = ν−1 = 4.
Conjecture:

]{S ∈ S(p) | |S| = A} ∼ cst.A−3/2eβ0A (A→∞)
for all d ≥ 2.
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Dynamically triangulated surfaces
• Replace S(γ1, . . . , γk) by triangulated surfaces in Rd with
quadratic dependence of action on embedding coordinates.
• Explicit proof that string tension does not vanish at β0.
• Can be (formally) extended to d ≤ 1. For d = 0 one obtains
a model of (abstract) two-dimensional (simplicial) complexes,
believed to be equivalent to 2D (Liouville) quantum gravity.
• Combinatorial correspondences between two-dimensional
complexes and trees turn out important for carrying out
calculations (... G. Schaeffer, ... ) and as a theoretical tool (...
J.-F. Le Gall, ... ). Example (CDT):

x

v1

x0 ←→
x0

x

v1

Figure: Causal triangulation of the disk and the corresponding tree.
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3. Tree models
Generic planar trees
TN = {planar rooted trees with N edges}; root r of degree 1
T ∈ TN : σi = degree of vertex i ∈ T
BR(T ) = ball of radius R in T around the root

T =
⋃

N≥1 TN ∪ T∞
d(T ,T ′) = inf{ 1

R | BR(T ) = BR(T ′)}
(T , d) , complete separable metric space r

Weak convergence of measures: µN → µ if
∫

fdµN →
∫

fdµ
as N→∞, f bounded continuous fct. on T
Equivalently: µN(Ba(T ))→ µ(Ba(T )) ,T ∈ T , a > 0,
where Ba(T ) is the ball of radius a around T .
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Branching (or offspring) probabilities:
pn ≥ 0, n = 0, 1, 2, . . .

∑
n pn = 1.

• Corresponding Galton-Watson branching process is
concentrated on finite trees if avarage offspring m =

∑
n npn

equals 1 (critical case) or is < 1 (subcritical case).

Finite size partition function: ZN =
∑

T∈TN

∏
i∈T\r pσi−1

Generating function: Z (g) =
∑

N≥1 ZNgN

Finite size measure: µN(T ) =
∏

i∈T\r pσi−1

ZN
, T ∈ TN

Example (uniform tree): pn = 2−(n+1), n ≥ 0,∏
i 6= r

pσi−1 = 2
∑

i 6=r σi = 2−2|T |+1 , ZN = 2−2N+1]TN ,

µN(T ) = 1
]TN

, T ∈ TN
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Basic equation for partition functions:

Z(g) = g f(Z(g))

where f (z) =
∑∞

n=0 pnzn
= + ∑

n≥1

. . .

pn

p0

r r
r

Generic assumption:

a) (pn) is critical, i.e.
∑∞

n=0 npn = 1
(valid for uniform tree)

b) Convergence radius for f is ρ > 1
(ρ = 2 for uniform tree)

Z (g) 1 Z

y

y = Z
y = 1

g Z
f

Then
Z (g) = 1−

√
2

f ′′(1)(1− g) 1
2 + O(1− g)

ZN = (2πf ′′(1))− 1
2 N− 3

2 (1 + O(N−1) (N →∞)
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Theorem (D-Jonsson-Wheater, 2007) µN → µ as N →∞
where µ is concentrated on one-ended trees whose branches at
spine vertices si are i.i.d. Galton-Watson trees with offspring
probabilities pn and σsi are i.i.d. with probability
(σsi − 1)pσsi−1 , σsi ≥ 2.

s1 s2
s3

s4rr

• Hausdorff dimension dh: |BR(T )| ∼ Rdh for R →∞
• Spectral dimension ds : q2n(T ) ∼ n−

ds
2 as n→∞,

where q2n is the probability that simple random walk on T
starting at r returns to r after 2n steps.

Theorem (D-Jonsson-Wheater, 2007) For any generic tree
dh = 2 and ds = 4

3 hold µ - a.s.

• The local limit of causal dynamical triangulations exists and
dh = 2 almost surely. Also known that ds = 2 almost surely.
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Trees with height dependent weights (with M. Ünel, 2023)

Tm,N = {planar rooted trees of size N and height h(T ) ≤ m}
Am,N = ]Tm,N

Define µ
(ζ)
N (T ) = eζh(T )

Z (ζ)
N

, T ∈ TN ,

where Z (ζ)
N =

∑
T∈TN

e−ζh(T ) =
∑∞

m=1 e−ζm(Am,N − Am−1,N)

Note For ζ = 0 the measure µ(0) coincides with the uniform
measure on TN .

We have:
Am,N = 4N ∑bm

2 c
k=1

1
m+1 tan2 πk

m+1

(
1 + tan πk

m+1

)−N
, N ≥ 2

For ζ > 0, the asymptotic form of Z (ζ)
N is obtained by a

saddlepoint approximation:

Z (ζ)
N = (eζ − 1)

√
π
B
ζ
2 e−AN

1
3 N− 5

6 4N(1 + N−δ) (δ > 0)

A = 3
(
πζ
2

) 2
3
, B = 3

(
ζ2

4π

) 2
3
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Theorem Assume ζ > 0. Then µ(ζ)
N → µ(ζ) as N →∞, where

µ(ζ) is concentrated on T∞ and determined by
µ(ζ)(B 1

r
(T )) = e−ζ(r−1)4−|T |2K+1∑K

R=1
(K

R
) µR−1

(R−1)!

for any finite tree T of height r and with K vertices at height r .

Description of µ(ζ):
The spine of T ∈ T∞ is defined as the subtree of T spanned by
vertices of infinite type, i.e. vertices having infinitely many
descendants in T .
Let T s = {T ∈ T∞ | all vertices in T are of infinite type},
which is a closed subset of T . The spine map χ : T → T s is
Borel-measurable. Set µ̃(ζ)(E ) = µ(ζ)(χ−1(E )) , E ⊆ T s .
Theorem µ̃(ζ) is a Poisson tree defined by

µ̃(ζ)(Bs
1
r
(T )) = e−ζ(r−1) ζR−1

(R−1)! , r ≥ 0

for any finite tree T of height r with R leaves, all at height r .
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Corollary The random variables
τr (T s) = |Br+1(T s)|+ |Br−1(T s)| − 2|Br (T s)|

are i.i.d. with distribution
µ̃(ζ)(τr = n) = e−ζ ζ

n

n! , n ≥ 0.

• This implies dh(T s) = 2 for µ̃(ζ) - a.e. T s .

Vertex i in T s has σi angular sectors:

αi = 1 αi = 4

αi = 3αi = 2

i
Vertex i of degree 4

with 4 angular sectors.

Theorem µ(ζ) is obtained from µ̃(ζ) by decorating T s with
branches Ti ,αi , αi = 1, . . . , σi , in each angular sector,
independently and identically distributed as Galton-Watson
trees with offspring probability pn = 2−(n+1).
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Theorem dh(T ) = 3 holds µ(ζ) - a.s.

The case ζ < 0: limN→∞ µ
(ζ)
N = µ(ζ) exists and is

concentrated on single-spine trees with i.i.d. subcritical
branches. In particular, dh(T ) = 1 for µ(ζ) - a.e. T .

ζ
single-spine

dh = 1
multi-spine

dh = 3

single-spine

dh = 2
0
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• Spectral dimensions of µ(ζ) and µ̃(ζ) for ζ > 0 not known.
• Generalisations: introduce height-dependence for general
generic GW-trees.
• Implications for randomly triangulated models, in particular
CDT coupled to e.g. spin systems or to loop models.
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