
Entanglement Area-type Bounds for
Pure States of Rapid Decorrelation

Michael Aizenman

Princeton University

The entropy of the restriction of a pure quantum state of a lattice system to a subset is a
measure of the entanglement between the system’s two components. The talk will focus on
conditions that imply an area-type bound on the entanglement in states of quantum lattice
models, and the criterion’s application to the ground states of the quantum Ising model.

(Joint work with Simone Warzel)

Path Integrals and Friends
Celebrating Antti-Jukka Kupiainen

Helsinki, 3 Sept 2024.

1 / 12



Quantum Ising model as an example

An example: the Quantum Ising Model in transverse field (QIM)

A finite graph G = (V, E). The Hilbert space of state vectors: HV = ⊗C2 (“qbits”)

Local spin ops: σu = (σx
u, σ

y
u, σ

z
u), with σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
The Hamiltonian: H =

∑
(u,v)∈E(G)

Ju,vσ
z
uσ

z
v − η

∑
u∈V

σx −
[
h
∑
u∈V

σz
]

(we focus on h = 0).

IfH has a unique ground state |Ψ〉 then: 〈Ψ|Q|Ψ〉 = lim
β→∞

tr Q e−βH

tr e−βH

More general thermal states: Q 7→ 〈Q〉 = tr Q e−βH/Z(β) ZV(β) = trHV e−βH.

The relevant path integral (!) is over the space of spin configurations
expressed in a convenient computational basis, e.g. of |(σz)〉 = ⊗u|σz

u〉.

Z(β) =
∑
(σz)

〈(σz)|e−βH|(σz)〉 =

=
∑
(σz)

∫
Ω

e−
∫ β

0
∑

(u,v)∈E Ju,vσ
z
u(t,ω)σz

v(t,ω)
1[(σz(0, ω)) = (σz(β, ω)) = (σz)] ρ(dω)

The quantum state invokes the restriction to t = Const of a (d + 1) dimensional Ising model.
Note: i) Ising model’s Markov property is lost, ii) quantum phase transition at T = 0!)
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More general quantum lattice systems Entanglement entropy

Quantum states: = expectation value functionals Q 7→ 〈Q〉 = tr Qρ ρ ≥ 0, tr ρ = 1.

State’s entropy: S(ρ) := −
∑

n λn log λn (λn ranging over eigenvalues of ρ)

Pure states: ρ = |Ψ〉〈Ψ| , S(|Ψ〉〈Ψ|) = 0

Schmidt decomp.: each normalized vector in a product space |Ψ〉 ∈ HA ⊗HB is of the form

|Ψ〉 =
N:=‘Schmidt rank’∑

j=1

√
pj |aj〉 ⊗ |bj〉

(
e.g.,

|Ψ〉(Bell) = 1√
2

[|+,+〉+ |−,−〉]

|Ψ〉(EPR) = 1√
2

[|+,−〉 − |−,+〉]

)
with |aj〉 and |bj〉 sampled from a |Ψ〉-dependent pair of orthonormal bases (and

∑
j pj = 1).

Thus for pure states
%A(ψ) := trHB |ψ〉〈ψ| =

∑
j

pj |aj〉〈aj|

%B(ψ) := trHA |ψ〉〈ψ| =
∑

j

pj |bj〉〈bj|

Entanglement entropy: In the above case

S(ρA) = S(ρB) = −
∑

j

pj log pj =: “A↔ B entanglement entropy in the state |Ψ〉〈Ψ|”

Mutual information: a more general concept

Iρ[A,B] = S(ρA) + S(ρB)− S(ρAB) ≡ S(A) + S(B)− S(AB)
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Preamble Quantum lattice systems

Quantum lattice systems: H = ⊗u∈WHu , with W ⊂ Zd ,Hu ≈ Cν (‘qdits’)

Restriction of pure state state |ψ〉 of quantum lattice system to A ⊂ W ⊂ Zd:

%A(ψ) := trHW\A |ψ〉〈ψ|

Entanglement entropy: S(%A) := − trHA %A ln %A =

dimHA∑
j=1

λ↓j (%A) log λ↓j (%A)−1

I%(A |Ac)



∝ O(|A|) under ρ = |Ψ〉〈Ψ| at generic Ψ ∈ HW (Page’s law)

≤ βO(|∂A|) under ρ = e−βH/ZW,β , H of finite range
(Wolf, Verstraete, Hastings, Cirac)

∝ O(|∂A|) expected for non-critical ground states Ψ (area law)

A state is said to be stoquastic if, in a basis ofHw based on configurations σ = (σu)u∈W

|Ψ〉 =
∑

σ=(σu)u∈W

√
p(σ) |σ〉 with: |σ〉 = ⊗u|σu〉, p(σ) ≡ p((σu)u∈W) ≥ 0 .

We may refer to such states as |P〉 – in terms of the probability function p(σ).
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Stoquasticity Examples

Stoquastic state (= sign-problem free): |P〉 =
∑
σ

√
p(σ) ⊗u |σu〉 with p(({σu}) ≥ 0

Examples:

• |ψβ〉 ∝ exp (−βH) |σ̃〉 for positivity preserving H

• ground state of the quantum Ising model H = −
∑
u,v

Ju,v S(3)
u S(3)

v − η
∑

u

S(1)
u

• p from classical Ising model’s Gibbs equilibrium measure sampled e.g. along hyperplanes

• ground state of antiferromagnetic spin S chains with the projection based interaction

H = −(2S + 1)
∑
u∼v

K(0)
u,v

which for S = 1/2 coincides with the d-dimensional quantum Heisenberg model, . . .

5 / 12



High-fidelity, low-complexiy approximations Intuition & a construction

Intuition: surrounding A ⊂ W by a buffer zone B

• |ψW〉 non-critical ground state in W = A ∪ B ∪ C

⇒ %A(ψW) ≈ %A(ψAB)

• rank%A(ψAB) ∼ 2|B| Compared with %A(ψAB) this
could be low rank !!!! Is it of high fidelity ?

• Potentially Yes – if conditioned on σB

the state’s correlations of A and C are “typically” weak

Hence, seeking high-fidelity, low complexity approximation we are led to:

approximate |P〉 ←→ p(σA,σB,σC) = p(σB) · p(σC|σB) · p(σA|σB σC)

by |P(B)〉 ←→ p(B)(σA,σB,σC) = p(σB) · p(σA|σB) · p(σC|σB)

In other words: we approximate the reduced state ρA(P) by

%A(P(B)) =
∑
σB

p(σB) |ϕA(σB)〉〈ϕA(σB)| |ϕA(σB)〉 :=
∑
σA

√
p(σA|σB) |σA〉 .
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Fidelty bound through conditional dependence

Fidelity of quantum states: F(%1, %2)def
=‖
√
%1
√
%2‖2

1

It controls the trace distance: [1−
√

F(%1, %2)] ≤ 1
2‖%1 − %2‖1 ≤ 2[1−

√
F(%1, %2)].

Uhlmann’s variational principle: F
(
ρA(|Ψ〉〈Ψ|), %A(|Φ〉〈Φ|)

)
≥ |〈Ψ|Φ〉|2.

As a tool for estimating the fidelity of the approximation of P by P(B) we employ the following
measure of conditional correlation between A and C, conditioned on σB:

δB(A |C) :=
∑
σB

p(σB) δ̂σB (A |C)

with δ̂ the total variation measure for conditional dependence:

δ̂σB (A |C) :=
∑

σA,σC

[p(σAσC|σB)− p(σA|σB) p(σC|σB)]+

Note: δ̂σB (A |C) = 0 for p classical Gibbs measures, if range < width B.

Theorem 1 (our fidelity estimate): For any stoquastic vector |P〉 and its approximation |P(B)〉

1
4
‖ρA(P)− %A(P(B))‖1 ≤ 1− |〈P(B)|P〉|2 ≤ 2 δB(A |C)

the left inequality (which is exact up to the factor of 2) is based on:
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Controlling conditional dependence Some results

Recap: As a measure of conditional correlation between A
and C ,conditioned on σB, we employ:

δB(A |C) :=
∑
σB

p(σB) δ̂σB (A |C)

with

δ̂σB (A |C) :=
∑

σA,σC

[p(σAσC|σB)− p(σA|σB) p(σC|σB)]+

Theorem 2: (Area law bound, general dimension) If for all A and buffers Bl, of widths l > 0,

δBl (A |C) ≤ exp (−[l− l0(A)]+/ξ) , ξ ∈ (0,∞)

then
S(%A(P)) ≤ C |∂A| l0(A)

(
in cases of interest l0(A) ≈ log |∂A|

)
[
A weaker alternative condition: δBl (A |C) ≤ (1 + [l− l0(A)]+/ξ)

−α (power law decay)

with some α > 2 and ξ > 0
]
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Bounds on entanglement entropy rapid decoupling implies area law

Theorem 3: (FKG boost) For stoquastic states whose probability distributions p has the
FKG property

δB(A |C) ≤ 1
4

∑
u∈A,v∈C

max
D⊃B

max
σD
〈σu;σv〉σD

(inspired by Lebowitz ’72)

A specific example:
For the quantum Ising model in transverse field one has: 〈σu;σv〉σD ≤ 〈σuσv〉

(an extension of the classical model’s recent correlation inequality of Ding-Song-Sun ’22).

Based on that, and the model’s known “sharpness of the phase transition”, the model’s
sub-critical ground states satisfy:

δBl (A |C) ≤ cξ |∂A| exp (−l/ξ) , ξ ∈ (0,∞)

We conclude that the QIM’s ground states exhibit area-size entanglement – up to the model’s
quantum phase transition.
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Bounds on entanglement entropy rapid decoupling implies area law

• Some references of relevance:

1D non-critical ground states: Hastings ‘07 , Brandao-Horodecki ‘15, . . .

Subset of sub-critical 1D Quantum Ising model (by other means)
Grimmet-Osborn-Scudo ‘08 &‘20

Case d ∈ {1, 2} and ground-states of gapped, frustration free Hamiltonians:
detectibility argument by Anshu-Arad-Gosset ‘22

Random current method for Quantum Ising: Björnberg-Grimmett, Crawford-Ioffe ‘09

• Expectation:

Strict area law of non-critical ground-states of local Hamiltonians vs.
log-corrected area law at criticality (Rényi-2 entropy). Calabrese-Cardy ‘04

• Further references and results: Aizenman-Warzel (arXiv preprint ‘24)
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Thank you for your attention!

Congratulations Antti
on your multiple accomplishments,

and best wishes for challenges and joys ahead !!

MCQST
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Extra rapid decoupling implies area law

Some key estimates in the proof of

Theorem 2: (Area law bound) Exponential decoupling over buffers Bl of widths l > 0

δBl (A |C) ≤ exp (−[l−l0(A)]+/ξ) , ξ ∈ (0,∞)

implies S(%A(P)) ≤ C |∂A| l0(A)

To bound the entropy, break S(%A(P)) = −
dimHA∑

j=1

λj lnλj into:

−
dimHBl∑

j=1

λj lnλj ≤ ln dimHBl = |Bl| ln ν

−
∑

j>dimHBl

λj lnλj ≤ µ ln
dimHA

µ
with µl :=

∑
j>dimHBl

λj.

From fidelity bound with buffer of width l:

µl = 1−max {tr %APN | Pl orthogonal projection of rank P ≤ dimHBl}
= 1−max {F(ρA, %̂A) | %̂A is a state on A with rank %̂A ≤ dimHBl}
≤ 2 δBl (A |C) ≤ 2 exp (−[l− l0(A)]+/ξ) .

Optimize, and apply the bound on a range of scales ...
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