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Abstract
This paper considers how to identify statistical outliers in psychophysical datasets where the underlying sampling
distributions are unknown. Eight methods are described, and each is evaluated using Monte Carlo simulations of a typical
psychophysical experiment. The best method is shown to be one based on a measure of spread known as Sn. This is shown to
be more sensitive than popular heuristics based on standard deviations from the mean, and more robust than non-parametric
methods based on percentiles or interquartile range. MATLAB code for computing Sn is included.
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The problem of outliers

Statistical outliers are observations that diverge abnormally
from the overall pattern of data. They are often generated
by processes qualitatively distinct from the main body of
data. For example, in psychophysics, spurious data can be
caused by technical error, faulty transcription, or—perhaps
most commonly—participants being unable or unwilling
to perform the task in the manner intended (e.g., due
to boredom, fatigue, poor instruction, or malingering).
Whatever the cause, statistical outliers can profoundly affect
the results of an experiment (Osborne & Overbay, 2004),
making similar populations appear distinct (Fig. 1a, top
panel), or distinct populations appear similar (Fig. 1a,
bottom panel). For example, it is tempting to wonder how
many ‘developmental’ differences between children and
adults are due to the extreme data emanating from a small
subset of badly behaved (‘non-compliant’) children.
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General approaches and outstanding
questions

One way to militate against statistical outliers is to only ever
use non-parametric statistics. These have a high breakdown
point (Huber, 2011), and so tend to be relatively unaffected
by small numbers of extreme values. In reality though, when
it comes to inferential hypothesis testing, non-parametric
methods are often impractical, since they are less powerful,
less well understood, and less widely available than their
parametric counterparts.

Alternatively, many experimenters identify and remove
outliers ‘manually’, using some often unspecified process of
‘inspection’. This approach is not without merit. However,
when used in isolation, manual inspection is susceptible to
bias and human error, and it precludes rigorous replication
or review.

Finally then, statistical outliers can be identified numer-
ically. If the underlying sampling distribution is known a
priori, then it is trivial to set a cutoff based on the likeli-
hood of observing each data point. In most psychophysical
experiments, however, the underlying sampling distribution
is unknown. Indeed, it is often the very properties of this
distribution that we are attempting estimate (e.g., the mean
value of some variable, x, or its standard deviation).

When the sampling distribution is unknown, researchers
are often compelled to use heuristics to identify outliers,
such as “was the data point more than N standard deviations
from the mean?” (Fig. 1b). At present, a plethora of
such heuristics exist in common usage. It is unclear
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Fig. 1 Example hypothetical data showing: a how the presence of
statistical outliers (red squares) can qualitatively affect the overall
pattern of results, and b common errors made by existing methods

of outlier identification heuristics, including misses and false alarms
(FA). P values in panel a pertain to the results of between-subject t

tests

which method works best, and careless or unscrupulous
experimenters are free to pick-and-choose whichever yields
the outcome they expect or desire.

The goal of the present work was therefore to: (i)
describe the methods currently available for identifying
statistical outliers (in data generated from unknown
sampling distributions), and (ii) use simulations to assess
how well each method performs in a typical psychophysical
context.

State-of-the-art methods for identifying
statistical outliers

Here we describe eight methods for identifying statistical
outliers. Some of this information can also be found in
a more wide ranging review by Cousineau and Chartier
(2010).

SD xi=outlier if it lies more than λ standard deviations, σ ,
from the mean, x̄:

|xi | > (x̄ + λσ) , (1)

where λ typically ranges from 2 (liberal) to 3 (conserva-
tive). This is one of the most commonly used heuristics, but
it has substantial flaws. Both the x̄ and σ terms are easily
distorted by extreme values, meaning that more distant out-
liers may ‘mask’ lesser ones. This can lead to false negatives
(identifying outliers as genuine data; Fig. 1b, top panel).
The method also assumes symmetry (i.e., attributes equal

importance to positive and negative deviations from the cen-
ter), whereas psychometric data are often skewed—since,
for example, the process that lead to outlying data may
lead to sensory abilities being disproportionately under-
estimated, rather than overestimated (e.g., see Section 2).
The misassumption of symmetry can lead to false positives
(identifying genuine data as outliers; Fig. 1b, bottom panel).
Finally, while the SD heuristic does not explicitly require
the sample distribution to be Gaussian distributed, the ±λσ

bracket may include more or less data than expected if data
are not. For example, ±2σ would exclude 5% of the most
extreme values when data are Gaussian, but as much as 25%
otherwise (see Chebyshev’s inequality).

GMM xi=outlier if it lies more than λ standard deviations
from the mean of the primary component of a Gaussian
Mixture Model:

|xi | > (x̄1 + λσ1) where

pdf (x) = ω�(x; μ1, σ1) + (1 − ω)�(x; μ2, σ2). (2)

A logical extension to SD: The two methods are identical,
except that when fitting the parameters to the data, the
GMMmodel also includes a secondary Gaussian component
designed to capture any outliers. This second component
is not used to identify outliers per se, but instead prevents
extreme values from distorting the parameter estimates
of the primary component. In practice, the fit of the
secondary component must be constrained to prevent it
from ‘absorbing’ non-outlying points. For example, if it is
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suspected that some observers did not understand the task,
then one might posit a second distribution with a mean
constrained to a near-floor level of performance.

The GMM heuristic can be further extended by adding
a third or fourth component, or by making the number
of mixture components itself a free parameter, predicated
upon some information theoretical criterion (Marin et al.,
2005). Thus, in the example above, a third distribution
might be appropriate if it was further suspected that
there was group of abnormally high-achieving observers
(e.g., individuals with extensive prior experience, or some
physiological advantage). N-dimensional GMMs are not
considered in the present work, however, as the size of a
typical psychophysical dataset is generally insufficient to
constrain so many free parameters.

rSD Same as SD, but applied recursively until no additional
outliers are identified:{ |x0

i | > (x̄0 + λσ0)

|xn
i | > (x̄n + λσn) .

(3)

This heuristic aims to solve the problem of masking
(see above) by progressively peeling away the most
extreme outliers. However, like SD, it remains intolerant to
distributions that do not conform to the assumed Gaussian
shape. In situations where samples are sparse or skewed,
this approach is therefore liable to aggressively reject large
quantities of genuine data (see Fig. 1b). Users typically
attempt to compensate for this by using a relatively high
criterion level, and/or by limiting the number of recursions
(e.g., λ ≥ 3, nmax = 3).

IQR xi=outlier if it lies more than λ times the interquartile
range from the median:

|xi | > (x̃ + λiqr) . (4)

This is a non-parametric analogue of the SD rule:
substituting median and iqr for mean and standard
deviation, respectively. Unlike SD, the key statistics are
relatively robust: the breakdown points for x̃ and iqr are
50% and 25% (respectively), meaning that outliers can
constitute up to 25% of the data before the estimated values
start to become distorted (Rousseeuw & Croux, 1993).
However, like SD, the IQR method only considers absolute
deviation from the center. It therefore remains insensitive
to any asymmetry in the sampling distribution (Fig. 1b,
bottom).

prctile xi=outlier if it lies above the λth percentile, or below
the (1 − λ)th:

xi > Pλ or xi < P1−λ. (5)

This heuristic effectively ‘trims’ the data, rejecting the most
extreme points, irrespective of their values. Unlike IQR,

this approach is sensitive to asymmetry in the sampling
distribution. However, it is otherwise crude in that it ignores
any information contained in the spread of the data points.
The prctile method also largely begs the question, since the
experimenter must estimate, a priori, the number of outliers
that will be observed. If λ is set incorrectly, genuine data
may be excluded, or outliers missed.

Tukey xi=outlier if it lies more than λ times the iqr from the
25th/75th percentile:

xi > (P75 + λiqr) or xi < (P25 − λiqr) . (6)

Popularized by the renowned statistician John W. Tukey,
this heuristic, otherwise known as the ‘fence’ or ‘boxplot’
approach, attempts to combine the best features of the
IQR and prctile methods. The information contained in the
spread of data, iqr , is combined with the use of lower/upper
quartile ‘fences’ that provide some sensitivity to asymmetry.

MADn xi=outlier if it lies farther from the median than λ

times the median absolute distance [MAD] of every point
from the median:( |xi − x̃|

MADn

)
> λ where MADn = med

i=1:n|xi − med
j=1:nxj |,

(7)

Unlike the other non-parametric methods described previ-
ously, this heuristic uses MAD rather than iqr as the mea-
sure of spread. This makes it more robust, since the MAD
statistic has the best possible breakdown point (50%, versus
25% for iqr). However, as with IQR, MADn assumes sym-
metry, only considering the absolute deviation of datapoints
from the center.

Sn xi=outlier if the median distance of xi from all other
points, is greater than λ times the median absolute distance
of every point from every other point:

(
medj �=i |xi −xj |

Sn

)
>λ where Sn =cnmed

i=1:n

{
med
j �=i

|xi −xj |
}

,

(8)

where cn is a bias correction factor for finite sample sizes
(see Listing 1 for details). Introduced by Rousseeuw and
Croux (1993), and Sn term, like MAD, is a maximally
robust measure of spread. However, it differs from
MADn in that Sn considers the typical distance between
all data points, rather than measuring how far each
point is from some central value. It therefore continues
to provide a valid measure of spread even when the
sampling distribution is asymmetric. The historic difficulty
with Sn is its computational complexity. However, with
modern computing power and the relatively small size of



1192 Atten Percept Psychophys (2019) 81:1189–1196

Listing 1 MATLAB code for computing Rousseeuw & Croux’s measure of spread: Sn
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psychophysical datasets, processing times are negligible: on
the order of milliseconds. For example, using an ordinary
office PC, it takes just ∼4 ms to apply the MATLAB code in
Listing 1 to a vector of 100 data points.

Comparison of techniques using simulated
psychophysical observers

To assess the eight methods described in Section 2,
each was applied to random samples of data, prelabeled
either as ‘bad’ (should be excluded) or ‘good’ (should
not be excluded). Rather than defining arbitrary sampling
distributions for these two categories, and since their
possible values are infinite, we instead simulated a
specific situation, representative of a typical psychophysical
scenario. Thus, a common situation is one in which the
experimenter suspects some observers were not always/fully
complying with the task instructions (e.g., due to boredom,
fatigue, or malingering). The experimenter wishes to
identify and exclude these individuals based on the
statistically aberrant data they are likely to produce. This
scenario was simulated as follows.

Each simulated observer consisted of a randomly
generated psychometric function (Fig. 2). Non-compliant
observers had psychometric functions that tended to exhibit
elevated thresholds, slopes, and lapse rates. They were thus
more likely to produce statistically outlying data points
(specifically: estimates of 70.7% threshold; Fig. 3, red bars).
Compliant observers had psychometric functions lower
with lower (better) thresholds, slopes, and lapse rates, and
produced the main distribution of ‘good’ data (Fig. 3, blue
bars). The Guess Rate of all function was fixed at 50%,
reflected a typical two-alternative forced-choice [2AFC]
paradigm (Macmillan & Creelman, 2005).

Using these psychometric functions, response data for
individual trials were generated, and the resultant sequence
of trial-by-trial responses were used to estimate perceptual
thresholds (or: just noticeable differences), exactly as

one would with a human participant. Specifically, on
each trial a stochastic (correct/incorrect) response was
generated, where the probability of responding correctly
was determined by evaluating the psychometric function
at the current stimulus magnitude (see Fig. 2). After each
response, stimulus magnitude was varied according to a
2-down 1-up transformed staircase (Levitt, 1971). The
experiment terminated after eight staircase reversals, and
the final threshold was computed by mean-averaging the
final four reversals. Figure 3 shows the resultant histogram
of thresholds across a large number of simulated observers.
For further details regarding the method simulation, the raw
MATLAB source code can be found at: https://github.com/
petejonze/psychosim.

Simulations were repeated using varying sample sizes
and varying proportions of non-compliant observers.
Possible sample sizes, n, took the values 〈8, 32, 128〉,
representing small, medium, and large psychophysical
cohorts. The proportion of Non-Compliant observers varied
from 0 to 50% of n, in integer steps (i.e., 〈0, 1, ..., 16〉,
when n=32). This yielded a total of 54 unique conditions
(SAMPLE SIZE x PROPORTION NON-COMPLIANT), each
of which was independently simulated 2000 times and the
results mean-averaged to minimize error. Note that the
use of 1999 repetitions is typical of such Monte Carlo
simulations, and none of the present conclusions would be
expected to change if this number were increased.

The outcome measures were: hit rate and false alarm rate
(i.e., those signal detection theoretic performance metrics
that characterize the sensitivity and specificity of a classifier
(Macmillan & Creelman, 2005)), and robustness (i.e., how
great a proportion of non-compliant observers could be
tolerated, before performance deteriorated precipitously).

Note that non-compliance is not the only process that
may give rise to statistical outliers in psychophysical
datasets. Some processes, such as transcription errors of
technical faults, can lead to missing values, or values so
extreme that they may be relatively trivial to identify. Other
processes can cause outliers to be distributed both above and

Fig. 2 Mean [±1 SD] psychometric functions for simulated observers.
The shape of the function was logistic. The probability of responding
correctly to a stimulus of magnitude x was therefore: P(Correct) =
G + (1 − L − G)(1/[1 + e− x−T

S ]). The Guess Rate, G, was fixed at
50%. The other three parameters—threshold (T ), slope (S), and lapse

rate (L)—varied randomly between observers, according to either a
truncated Gaussian distribution (compliant observers) or a uniform dis-
tribution (non-compliant observers). See table for exact values for the
two distributions. For more information on psychometric functions and
the four parameters employed here, see Klein (2001)

https://github.com/petejonze/psychosim
https://github.com/petejonze/psychosim
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Fig. 3 Data from simulated observers. (left) Sampling distributions for
the 70.7% Threshold statistic, generated by simulation, using the psy-
chometric functions in Fig. 2. (right) Example samples, with variable
sample size 〈8, 32, 128〉 and proportion of non-compliant observers (0

to 50%). For every sample, each of the eight methods of outlier detec-
tion in Section 2 was applied, and its performance recorded. Dashed
vertical line shows the ideal unbiased classifier, for which: hit rate =
0.97, false alarm rate = 0.05

below the main body of data (imagine, for example, if a test
of color discrimination was applied to a broad population
of people, including both dichromats and tetrachromats,
who would be expected to score systematically worse/better
than normal, respectively). In short, the present simulations
were intended to be representative, not comprehensive, and
a prudent reader may wish to modify the present code
(see above for hyperlink) to simulate the exact dynamics
of their particular experiment, or to assess novel methods
of outlier detection. Also note that while the proportion of
non-compliant observers was allowed to range from 0 to
50%, values greater than 5% would generally be considered
extremely high in a population of healthy, well-motivated

adults. Higher rates of non-compliance are not uncommon,
however, when working with clinical or developmental
datasets (Jones et al., 2015).

Results and discussion

The results of the simulations are shown in Fig. 4. We begin
by considering only the case where n=32 (Fig. 4, middle
column)—a relatively typical sample size for behavioral
experiments—before considering the effect of sample size.

In general, the SD rule proved poor. When λ=3,
it was excessively conservative—seldom exhibiting false
alarms, but often failing to identify non-compliant observers

Fig. 4 Simulation results. The eight classifiers described in Section 2 were used to distinguish between random samples of ‘compliant’ and
‘non-compliant’ simulated observers (see Fig. 3). Numbers in parentheses indicate the criterion level, λ, used by each classifier
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[NCOs], particularly when the proportion of NCOs was
large (low hit-rate/sensitivity). The use of a more lib-
eral exclusion criterion (λ=2) improved hit rates, but at
the expense of a higher false alarm rate (low specificity),
particularly when the number of outliers was low. Fur-
thermore, even when λ=2, SD still continued to exhibit a
generally lower hit rate than most other methods.

The modified GMM rule (implemented here with one
additional Gaussian component only, and constrained to
have a mean greater than the 75th percentile of a simple
unimodal Gaussian fit) performed similarly to SDλ=3, but
exhibited greater robustness (i.e., a less rapid decline in hit
rate as %NCOs increased). While the rSD rule generally
exhibited high hit rates, but also high false alarm rates and
a relatively steep decline in hit rates when %NCOs >

10%. Compared to the non-parametric methods, however,
all of the SD-based rules generally performed poorly;
only offering consistent advantages over the prctile rule:
the performance of which was entirely dependent on the
predefined exclusion rate matched the true number of
outliers exactly. The only exception might be if the expected
number of outliers was extremely low, in which case the
SDλ=3 rule might be considered sufficient, and may even
be desirable if the cost associated with false alarms was
exceptionally high.

The two iqr-based methods, IQR and Tukey, exhibited
high hit rates when the number of outliers was low (≤20%).
However, as expected, hit rates deteriorated markedly as the
number of outliers increased (i.e., in accordance with the
25% breakdown point for iqr). False alarm rates were also
somewhat higher overall than Sn.

The two median-absolute-deviation based methods,
MADn and Sn, were as sensitive as all other methods when
outliers were few (≤20%), and were more robust than
the iqr methods—continuing to exhibit high hit rates and
few false alarms even when faced with large numbers of
outliers. Compared to each other, MADn and Sn performed
similarly. However, the Sn statistic exhibited slightly fewer
false alarms. It also makes no assumption of symmetry, and
so ought to be superior in situations where the sampling
distribution is heavily skewed.

We turn now to how sample size affected performance.
With large samples (n=128), the pattern was largely
unchanged from the medium sample-size case (n=32)
except that rSD exhibited a marked increase in false
alarms, making it an unappealing option. Again, Sn was
generally superior, except in terms of a slight elevation
in false alarms at very low %NCO (relative to the very
conservative SDλ=3 rule). With small samples (n=8), the
prctile and rSD methods became uniformly inoperable,
while most other methods were generally unable to identify
more than a single outlier. The MADn and Sn methods,
however, remained relatively robust: exhibiting only a

modest decrement in hit rates, though they did exhibit
an elevated false alarm rate when there were few/no
outliers. It may be that the latter could be rectified by
increasing the criterion, λ, as a function of n, however this
was not investigated. The GMM method also performed
relatively well overall, but was only more sensitive than
MADn or Sn when the proportion of outliers was extremely
high (>33%).

Conclusions

Of the eight methods considered, Sn performed the best
overall. It exhibited a high hit rate across all sample sizes,
maintained a relative low false alarm rate, and was highly
robust—able to cope even with very large numbers of
outliers and/or very small sample sizes. Specific situations
were observed in which other heuristics performed as-
well-as, or even marginally better than, Sn. For example,
when sample sizes were large (n≥32) and the proportion
of outliers few (<25%) the non-parametric IQR/Tukey
rules exhibit similar hit rates to Sn, and only slightly
more false alarms. Likewise, a conservative SD rule (λ=3)
proved sufficient to isolate extremely small numbers of
outliers in large or midsized samples. In general though,
alternative heuristics were generally no better than Sn in
most circumstances, and failed precipitously in others (e.g.,
when the sample size was small or the proportion of outliers
large). The MADn heuristic, which is closely related to Sn,
proved almost as strong, and can also be considered a good
method for identifying outliers, as suggested previously
by others (Leys et al., 2013). However, as discussed in
Section 2 and elsewhere (Rousseeuw & Croux, 1993), the
MADn statistic assumes a symmetric sampling distribution,
and so would not be expected to perform as well in
situations where the sampling distribution is very heavily
skewed (e.g., when dealing with reaction time data (Ratcliff,
1993)). The popular SD metric and its derivatives proved
poor in nearly all circumstances, and should never be
used without independent justification (e.g., if real-time
processing of extremely large datasets were required, at
which point the computational overheads of Sn might
become a non-trivial constraint).

In short, of the methods considered here, Sn appears
to provide the best single means of identifying statistical
outliers when the underlying sampling distribution is
unknown. In the absence of countervailing reasons, it should
therefore be considered the ‘default’ choice for researchers,
and may be of particular benefit to those working with
small or irregular populations such as children, animals,
or clinical cohorts. MATLAB code for computing Sn is
provided in Listing 1. Many of the methods described here
are also supported by various ‘robust statistics’ packages
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for R (Rousseeuw et al., 2009; Wilcox, 2012) and MATLAB

(Verboven & Hubert, 2005).

On the ethics and practicalities of excluding
statistical outliers

Excluding statistical outliers is often regarded as poor
practice. Unless data could not possibly have arisen
otherwise, we cannot generally be certain that any outliers
were generated by some qualitatively distinct process (e.g.,
a subset of non-compliant or physiologically abnormal
observers), and that they are not simply the tail end of a
single, unitary population. By segregating such values, real
and potentially interesting individual differences in ability
may go unreported, and in the worst case the process of
outlier exclusion can be manipulated to support weak or
erroneous conclusions.

As shown in Section 2, however, the exclusion of
statistical outliers can sometimes be preferable to reporting
fundamentally misleading results. Automated methods of
statistical outlier identification should never be used blindly
though, and they are not a replacement for common sense.
Where feasible, data points identified as statistical outliers
should only be excluded in the presence of independent
corroboration (e.g., experimenter observations), and the
rates and criteria of exclusion should be articulated clearly.
Furthermore, best practice dictates that when outliers
are excluded, they should continue to be reported (e.g.,
graphically, and/or through independent analyses), and it
should be confirmed whether any of the study’s conclusions
are contingent on their exclusion. Thus, an example
statement from a study’s Methods section might read as
follows (NB: Supplemental Material not given):

Data from two participants (8.3%) were excluded post
hoc on the grounds that they: (i) were observed to be
inattentive and restless during testing; (ii) produced
statistically outlying results ([medj �=i |xi − xj |]/Sn >

3; see Rousseeuw & Croux, 1993); and (iii) exhibited
high error rates (>10%) on suprahthreshold (false-
negative) catch trials. No other participants met any of
these three criteria. Raw data from the two excluded
participants are still displayed in relevant figures,
but were not included in any analyses or descriptive
statistics. The findings of the present study were
unchanged if the reported analyses were repeated
with these two participants included, with one minor
exception (see Supplemental Material for details).
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