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Before FMT came to Finland...

Symposium in mathematical logic in Oulu, summer of 1974

Seppo Miettinen
Per Lindström
Micha l Krynicki
Finn Jensen
Dag Westerst̊ahl
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A close encounter with FMT

Workshop in Karpacz, Poland, fall of 1974

Hájek, Petr: Generalized quantifiers and finite sets.
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PHDs in Helsinki after my own PHD in Manchester 1977
and return to Helsinki in 1978

• 1984: Maaret Karttunen, Model theory for Infinitely deep
languages

• 1987: Tapani Hyttinen, Games and infinitary languages

• 1988: Lauri Hella, Definability hierarchies of generalized
quantifiers

• 1990: Heikki Tuuri, Infinitary languages and
Ehrenfeucht–Fräıssé games

• 1991: Taneli Huuskonen, Comparing notions of similarity for
uncountable models

• 1992: Kerkko Luosto, Filters in abstract model theory
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The 1990 European Summer Meeting of the Association for
Symbolic Logic was held in Finland from July 15 to July 22, 1990.
The meeting was called Logic Colloquium ’90 and it took place
in the Porthania building of the University of Helsinki as part of
the program of the 350th anniversary of the university.
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Logic Colloquium ’90 speakers
Wilfried Buchholz

Barry Cooper
Patrick Dehornoy

Hans-Dieter Donder
Dov Gabbay

Warren Goldfarb
Jaakko Hintikka
Ian Hodkinson
Ronald Jensen

Haim Judah
Phokion Kolaitis

Richard Laver
Per Martin-Löf

Alan Mekler
Grigori Mints

Yiannis Moschovakis
Tulende Mustafin
Ludomir Newelski
Francoise Point

Jean-Pierre Ressayre
Saharon Shelah
Hugh Woodin
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A portion of the program
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Mukkula Logic Summer School, Lahti, Finland, 1991
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PhDs in FMT in Finland

• Phokion’s mini-courses first in Helsinki in 1990 and then in
Mukkula in 1991 marked the beginning of finite model theory
in Finland

• Doctoral studies in Finland more or less inspired by FMT:
Nurmonen (1996), Kaila (2001), Kontinen Juha (2004),
Couceiro (2006), Niemistö (2007),

• ...or team semantics on finite models: Nurmi (2009),
Kontinen Jarmo (Amsterdam 2010), Kuusisto (2011), Galliani
(Amsterdam 2012), Yang (2014), Virtema (2014), Hannula
(2015), Paolini (2016), Rönnholm (2018), Anttila (202?), M.
Hirvonen (202?), Iso-Tuisku (202?), Puljujärvi (202?),
Quadrellaro (202?), Sandström (202?), Vilander (202?).

• Sorry if I forgot someone!
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Workshops on team semantics
1. November 7-9, 2009, First Workshop of the DepLog Group of LINT, Stockholm,

Sweden

2. August 16-20, 2010, ESSLLI Workshop on Dependence and Independence in
Logic , Copenhagen, Denmark

3. September 22, 2012, Workshop on Dependence Logic and Strategic Reasoning,
University of Amsterdam, The Netherlands

4. February 10 – 15 , 2013, Dagstuhl Seminar 13071 ”Dependence Logic: Theory
and Applications”, Dagstuhl, Germany

5. June 17, 2013, Workshop on Inquisitive Logic and Dependence Logic, University
of Amsterdam, The Netherlands

6. March 3-5, 2014, KNAW Academy Colloquium ”Dependence Logic”,
Amsterdam, The Netherlands

7. June 21–26 , 2015, Dagstuhl Seminar 15261 ”Logics for Dependence and
Independence”, Dagstuhl, Germany

8. January 13-18, 2019, Dagstuhl Seminar 19031 ”Logics for Dependence and
Independence”, Dagstuhl, Germany

9. August 10-12, 2020, Workshop on Logics of Dependence and Independence,
Online

10. August 9-10, 2021, ESSLLI Workshop on Logics of Dependence and
Independence (LoDE 2021), Online
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Some early developments in FMT in general

• Fagin: Contributions to the model theory of finite structures.
University of California, Berkeley. 1973.

• Vardi: Implication problem for data dependencies in the relational
model, The Hebrew University in Jerusalem. 1981.

• Gurevich: Toward logic tailored for computational complexity. 1983.

• Kolaitis, Prömel, Rothschild: Asymptotic enumeration and a 0-1 law
for m-clique free graphs. 1985, 1987.

• Kolaitis, Vardi, Infinitary logics and 0-1 laws. 1992.

• Dawar, Feasible computation through model theory. Thesis
(Ph.D.)–University of Pennsylvania. 1993.

• Makowsky, Pnueli, Oracles and quantifiers. 1994.
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Part II. Generalized quantifiers
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Finite model theory in Finland: descent from uncountable
to finite

• Ehrenfeucht-Fräıssé-games. Pebble games. Bijective games.

• Generalized quantifiers. Their hierarchies.

• Infinitary logic (with finitely many variables).

• Dependence logic.
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My third most cited paper:
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• “What has to be added to first-order logic in order to capture
exactly all polynomial-time properties of finite structures?”

• “Expand the framework of abstract model theory in a way
that allows for a treatment of finite model theory”.
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Theorem
Suppose Q is a finite sequence of simple unary quantifiers on finite
models.

1. The Härtig quantifier I is not expressible in Lω∞ω(Q).

2. The query “is E an equivalence relation with an even number
of equivalence classes?” is not expressible in Lω∞ω(I ,Q).

Proofs used Ramsey theory, such as van der Waerden’s Theorem
and Folkman’s Theorem.
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Lauri Hella: Logical hierarchies in PTIME. Information and
Computation 129 (1996).

• For each n, there is a polynomial time computable query
which is not definable in any extension of fixpoint logic by
n-ary quantifiers.

• This rules out the possibility of characterizing PTIME in
terms of definability in fixpoint logic extended by a finite set
of generalized quantifiers.

Hella: “I also give my special thanks to Phokion Kolaitis, from
whom I have learned everything I know about fixpoint logics,
DATALOG, and finite variable logics.”
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• Hella, Kolaitis, Luosto, Almost everywhere equivalence of
logics in finite model theory. 1996

• Hella, Kolaitis, Luosto, How to define a linear order on finite
models. 1997

• Dawar, Gottlob, Hella, Capturing relativized complexity
classes without order. 1998

• Hella, Imhof, Enhancing fixed point logic with cardinality
quantifiers. 1998

• Dawar, Hella, Seth, Ordering finite variable types with
generalized quantifiers. 1998.

• Hella, Libkin, Nurmonen, Notions of locality and their logical
characterizations over finite models. 1999.
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A hierarchy result for generalized quantifiers on finite
models

Qxφ(x) type (1)
Qxyφ(x , y) type (2)
Qxy,zφ(x , y)ψ(z) type (2, 1)
etc

Theorem (Hella, Luosto and V. 1996)

For each similarity type s there is a generalized quantifier Q of
type s so that Q is not definable in the extension of first order
logic by all generalized quantifiers of type lower than s.
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An idea ...

“Pseudo-finite model theory”, Matematica Contemporanea, (V.
2003)

“We consider the restriction of first–order logic to models, called
pseudo-finite, with the property that every first–order sentence true
in the model is true in a finite model. We argue that this is a good
framework for studying first-order logic on finite structures. We
prove a Lindström Theorem for extensions of first order logic on
pseudo-finite structures.”
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Part III: Team semantics.
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How I learned to stop worrying ... and understand team
semantics

• 11th LMPS 1999, Cracow: Micha l Krynicki gave a talk about
the Hodges semantics (“team semantics”) for so-called
IF-logic. Petr Hájek stood up. Flight back home.

• On the semantics of informational independence, Log. J.
IGPL, 2002.

• Dependence logic, CUP 2007.

• From infinite to finite models.
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Team semantics

24 / 60



I II III IV

Dependence logic D—A one slide sketch

• A team T , is a set (any set) of assignments of values to a
fixed set of variables.

• A team T satisfies a dependence atom =(x , y) if the values of
the variables x completely determine (in T ) the values of the
variables y i.e. ∀s, s ′ ∈ T (s(x) = s ′(s)→ s(y) = s ′(y)).

• We can build a logic where dependence atoms are the atomic
formulas, as well as the usual ones x = y , x 6= y ,R(x),¬R(x).

• We have the ‘usual’ first order logical operations ∧,∨,∀, ∃.
(They agree with their usual meaning, if no dependence atoms
are present.)

• The resulting logic is called dependence logic D.
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Paradigm shift

• The original (1999) paradigm of a team was a set of plays in a
semantic game.

• Connection to database dependency theory only unfolded six
years later (2005), when Peter van Emde Boas pointed out to
me that my =(x , y) is well known in computer science as
functional dependence x ⇒ y .

• Current paradigms are database and experimental data.
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NP

Theorem (Kontinen & V. 2009)

The properties of teams definable in D are exactly the downward
closed NP properties of teams.
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PTIME

• If we start from inclusion dependency instead of functional
dependency, we get inclusion logic.

• On finite models this is in a precise sense equal in expressive
power to fixpoint logic, i.e. on finite ordered models to
PTIME. (Galliani-Hella CSL 2013)
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Fragments, fragments,...

• Lauri Hella and Phokion Kolaitis: Dependence logic vs.
constraint satisfaction. CSL 2016.

• Identified a natural fragment of universal dependence logic
and showed that, in a precise sense, the fragment captures
constraint satisfaction.

• “During the past decade, dependence logic has emerged as a
formalism suitable for expressing and analyzing notions of
dependence and independence that arise in different scientific
areas.” (Hella & Kolaitis, CSL 2016)
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A richer picture

• First order literals θ: M |=T θ if and only if M |=s θ for all s ∈ T .

• Dependence atom: M |=T =(~x , y) if and only if s(~x) = s ′(~x)
implies s(y) = s ′(y) for all s, s ′ ∈ T .

• Constancy atom: M |=T =(y) if and only if s(y) = s ′(y) for all
s, s ′ ∈ T .

• Exclusion atom: M |=T~x | ~y if and only if for every s, s ′ ∈ T we
have s(~x) 6= s ′(~y).

• Inclusion atom: M |=T ~x ⊆ ~y if and only if for every s ∈ T there
is s ′ ∈ T such that s(~x) = s ′(~y).

• Anonymity atom: M |=T~x Υ y if and only if for every s ∈ T there
is s ′ ∈ T such that s(~x) = s ′(~x) and s(y) 6= s ′(y).

• Independence atom: M |=T ~x ⊥ ~y if and only if for every
s, s ′ ∈ T there is s ′′ ∈ T such that s ′′(~x) = s(~x) and s ′′(~y) = s ′(~y).
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The basic logical operations, others will follow...

In a model M, a team X satisfies:

φ ∧ ψ iff X satisfies φ and ψ
φ ∨ ψ iff X = Y ∪ Z s.t. Y satisfies φ and Z satisfies ψ
∃xφ iff X (F/x) satisfies φ for some F : X → P∗(M)
∀xφ iff X (M/x) satisfies φ
Qxφ iff (∃F : X → P(M2))(M |=X (F/xy) φ and

∀s ∈ X ((M,F (s)) ∈ Q).

Notation: P∗(M) = P(M) \ {∅}. s(a/x) is like s except at x the value is a.

X (F/x) = {s(a/x) : s ∈ X , a ∈ F (s)}. X (M/x) = {s(a/x) : s ∈ X , a ∈ M}.
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Some team logics

New atom New logic Sent. Formulas

=(x) Constancy logic FO 6=FO
=(x , y) Dependence logic = NP ↓-closed NP
x |y Exclusion logic
xΥy Anonymity logic = P ⊂ Additive P
x ⊆ y Inclusion logic on o. f. on o. f.
x ⊥ y Independence logic NP NP
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Definability of an atom from other atoms

Lemma (Galliani)

(a) The k-ary dependence atom =(x , y) is definable from the k + 1-ary
exclusion atom xz |yu and also in terms of the k + 1-ary
independence atom xz ⊥ yu. The k-ary exclusion atom is definable
from the k-ary dependence atom.

(b) The k-ary exclusion atom is definable in terms of the k-ary inclusion
and the k-ary independence atoms.

(c) The k-ary inclusion atom is definable from the (k,2)-ary
independence atom.

(d) The k-ary anonymity atom is definable in terms of the k + 1-ary
inclusion atom.

Problem: How to show that such definability results cannot be essentially
improved?
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Part VI: Dimension theory

Joint ongoing work with Lauri Hella and Kerkko Luosto.
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The background

• 2009-2020: Ciardelli, Hella, Luosto, Lück, Sano, Stumpf,
Vilander and Virtema.

• Matroid rank, Vapnik–Chervonenkis- or VC-dimension.
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Dimension of a family A of (arbitrary) sets

• Convex if for all S ,T ∈ A,

A ⊆ C ⊆ B ⇒ C ∈ A.

• Dominated (by
⋃
A) if

⋃
A ∈ A.

• G ⊆ A dominates A if there exist dominated convex families
DG , G ∈ G, such that

⋃
G∈G DG = A and

⋃
DG = G , for

each G ∈ G.

• The dimension of the family A is

D(A) = min{|G| | G dominates the family A},
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Some relevant operators on families of sets

• The intersection operator A ∩ B.

• The tensor disjunction operator:
A ∨ B = {A ∪ B | A ∈ A,B ∈ B}.

• Let f : X → Y , where X = X0 × · · · × Xm−1 and
Y = X0 × · · ·Xi−1 × Xi+1 × · · · × Xm−1 be defined by
f (a0, . . . , am−1) = (a0, . . . , ai−1, ai+1, . . . , am−1). The
projection operator is ∆X

∃i (A) = {f [A] : A ∈ A}.
• Given a set B ∈ P(Y ), let

B[Xi/i ] = {(a0, . . . , am−1) ∈ X |
(a0, . . . , ai−1, ai+1, . . . , am−1) ∈ B, ai ∈ Xi}.

The universal quantifier operator is:
∆X
∀i (A) = {B ∈ P(Y ) | B[Xi/i ] ∈ A}.
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Semantics via operators

We denote by ‖φ‖M,~x the set of teams T such that M |=T φ when
φ is a formula with free variables among ~x , len(~x) = m.

‖φ ∧ ψ‖M,~x = ‖φ‖M,~x ∩ ‖ψ‖M,~x

‖φ ∨ ψ‖M,~x = ‖φ‖M,~x ∨ ‖ψ‖M,~x

‖∃xiφ‖M,~x− = ∆Mm

∃i (‖φ‖M,~x)

‖∀xiφ‖M,~x− = ∆Mm

∀i (‖φ‖M,~x),

where ~x− is the tuple obtained from ~x by deleting the component
xi .
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Dimension function Dimφ,~x

Dimφ,~x(n) = sup
{

D(‖φ‖M,~x) | M is a model, |M| = n
}
.

Recall:

D(A) = min{|G| | G dominates the family A},
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First order — dimension is 1.

For every (classical) first order formula φ we have

‖φ‖M,~x = P(Tφ),

where Tφ = (‖φ‖M =){s ∈ Mm | M |=s φ}. Thus for first order φ

the family ‖φ‖M,~x is dominated (by Tφ), downward closed, and
convex. So Dimφ,~x(n) = 1.
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Explicit dimension function computations

1. Dimφ,~x(n) = 1 for every first order φ.

2. Dim=(y),y (n) = n.

3. Dim=(~x ,y),~xy (n) = nn
k
, where len(~x) = k .

4. Dim~x |~y ,~x~y (n) = 2n
m − 2, where len(~x) = len(~y) = m.

5. Dim~x⊆~y ,~x~y (n) = 2n
k − nk , where len(~x) = len(~y) = k.

6. Dim~x⊥~y ,~x~y (n) = (2n
m − nm − 1)(2n

k − nk − 1) + nm + nk ,
where len(~x) = k , and len(~y) = m.
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Dimension under relevant operators

Definition ([Lüc20])

Let X and Y be nonempty sets. A function
∆: P(P(X ))n → P(P(Y )) is a Kripke-operator, if there is a
relation R ⊆ P(Y )× P(X )n such that

B ∈ ∆(A0, . . . ,An−1) ⇐⇒
∃A0 ∈ A0 . . . ∃An−1 ∈ An−1 : (B,A0, . . . ,An−1) ∈ R.

• Intersection of families is a Kripke-operator.

• Tensor disjunction on X is a Kripke-operator.

• ∆Mm

∃i and ∆Mm

∀i are Kripke-operators.
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Operators preserving dimension

Definition
Let ∆: P(P(X ))n → P(P(Y )) be an operator. We say that ∆
weakly preserves dominated convexity if ∆(A0, . . . ,An−1) is
dominated and convex or ∆(A0, . . . ,An−1) = ∅ whenever Ai is
dominated and convex for each i < n.

Theorem
Let ∆R : P(P(X ))n → P(P(Y )) be a Kripke-operator, and let
A = ∆(A0, . . . ,An−1). If ∆ weakly preserves dominated convexity
then D(A) ≤ D(A0) · . . . · D(An−1).

Theorem
The operators ∆Mm

∩ , ∆Mm

∨ , ∆Mm

∃i and ∆Mm

∀i weakly preserve
dominated convexity. Hence they preserve dimension.
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The first main result — A strong Hierarchy Theorem

Definition
• The atom =(~x , y) is k-ary, if len(~x) = k ,

• The atom ~x ⊆ ~y is k-ary if len(~x) = len(~y) = k ,

• The atom ~t2 ⊥ ~t3 is max(k , l)-ary, if
len(~t2) = k , and len(~t3) = l .

Theorem
Dependence logic, inclusion logic, and independence logic each has
a proper definability hierarchy (even in the empty vocabulary) for
formulas based on the arity of the non-first order atoms.

The same for exclusion and conditional independence atoms.

Answers a question of Durand & Kontinen 2012.
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The second main result — A Hierarchy Theorem across
atoms

Theorem
• The k-ary dependence atom is not definable in the extension

of first order logic by < k-ary dependence (or any other
< k-ary) atoms, ≤ k-ary independence, inclusion, constancy
atoms, and any Lindström quantifiers.

• The k-ary inclusion atom is not definable in the extension of
first order logic by < k-ary inclusion, dependence, or
constancy (or any other < k-ary) atoms, and any Lindström
quantifiers.

• The k-ary independence atom: respectively.
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Intuitionistic implication

M |=T φ→ ψ ⇐⇒ ∀Y ⊆ T (M |=Y φ⇒ M |=Y ψ).

|= =(x1, . . . , xn, y) ≡ (=(x1) ∧ . . .∧ =(xn)) → =(y)

Hence, φ→ ψ increases (in some cases) dimension exponentially.

Note: → has second order strength (F. Yang 2013).

47 / 60



I II III IV

Exists-1 and forall-1

• The ∃1-quantifier is defined as follows: M |=T ∃1xφ if for
some a ∈ M we have M |=T [{a}/x] φ.

• The ∀1-quantifier is defined as follows: M |=T ∀1xφ if for all
a ∈ M we have M |=T [{a}/x] φ.

• The non-empty atom NE is defined by M |=T NE if and only if
T 6= ∅.
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Theorem
The logical operations

>

, ∀1, ∃1, and → all increase dimension.
NE has upper dimension 1 but it is not first order.

Proof.

1. D(x = y

> ¬x = y) = 2.

2. =(x1, ..., xk , y) ≡ ∀1z1...∀1zk(z1 6= x1 ∨ . . . ∨ zk 6= xk∨ =(y))

3. ∃1xφ ≡ ∃x(=(x) ∧ φ). =(x) ≡ ∃1x(x = y).

4. =(x1, . . . , xk , y) ≡ (=(x1) ∧ . . .∧ =(xk))→=(y)
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Corollary

1. ∀1 does not have a uniform definition in dependence logic
(Galliani 2012).

2. ∀1 and ∃1 are not lifts of Lindström quantifiers from Tarski
semantics to team semantics.

50 / 60



I II III IV

Summary of dimension theory

• With our dimension concept one can prove hierarchy results
for formulas, not just sentences1.

• Dimension reveals subtle qualitative differences between
logical operations (cf. ∀1,→,∨).

• Our method is very general, applies to arbitrary families of
sets in a finite domain.

1... and in team semantics there is a big difference!
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Summary of the talk

• From generalized quantifiers to generalized atoms.

• General theory of team semantics on finite domains.

• Now also multi- and probabilistic teams.

• Still open: Is there a logic for PTIME?
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Thank you Phokion!

The Helsinki logicians look forward to proving many

new theorems with you! And Happy Birthday!
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Thank you!
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