Fluctuation Relations and Fitness in Cell Populations

L. Peliti*

University of Helsinki, October 5, 2023

*SMRI, Santa Marinella (Italy)

Acknowlegments

A. Genthon

D. Lacoste

T. Nozoe

R. García-García

ESPCI PARIS

DUCATION SCIENCE

ΙΝΝΟΥΑΤΙΟΝ

Population growth rate

Starting from N(0) cells at time 0:

 $N(t) \sim N(0) e^{\Lambda t}$

Population growth rate:

$$\Lambda_t = rac{1}{t} \ln rac{N(t)}{N(0)} \qquad \Lambda = \lim_{t o \infty} \Lambda_t$$

Can we measure Λ ?

- Infinite time limit
- Infinite population
- Dependence on phenotype distribution and environment
- Intrinsic stochasticity
- · ...

Fitness

Fitness f_x of a phenotypic trait \mathcal{X} Measured by the growth rate of a subpopulation:

$$\frac{\mathrm{d}N_x(t)}{\mathrm{d}t}\simeq f_x\,\mathsf{N}(x,t),\qquad x\in\mathcal{X}$$

Fisher's fundamental theorem:

$$\frac{\partial}{\partial t}\overline{f_x} = \operatorname{var} f$$

Neglecting mutations, drift, phenotype change, ...

- Infinite population
- Dependence on phenotype distribution and environment
- Intrinsic stochasticity
- Epistasis, pleiotropy, ...

• ...

Fitness is central in model-building but elusive in experiment

Monitoring single-cell dynamics

Experiments on single-cell dynamics:

Phenotype (e.g., expression of some proteins) can be monitored by coupling to expression of fluorescent proteins Can we harness genealogical information to evaluate fitness and population growth rate?

Forward and Backward sampling

Leibler and Kussell, 2010

Division and doubling times

Evaluate

$$egin{aligned} \mathcal{D}_{ ext{KL}}(\omega_{ ext{back}} \| \omega_{ ext{for}}) &\coloneqq \sum_{\ell} \omega_{ ext{back}}(\ell) \ln rac{\omega_{ ext{back}(\ell)}}{\omega_{ ext{for}}(\ell)} \ &= \langle \mathcal{K}
angle_{ ext{back}} \ln 2 - t \Lambda_t \geq 0 \ \mathcal{D}_{ ext{KL}}(\omega_{ ext{for}} \| \omega_{ ext{back}}) &= t \Lambda_t - \langle \mathcal{K}
angle_{ ext{for}} \ln 2 \geq 0 \end{aligned}$$

Thus

$$rac{t}{\left< \mathcal{K} \right>_{ ext{back}}} \leq rac{\ln 2}{\Lambda_t} \leq rac{t}{\left< \mathcal{K} \right>_{ ext{for}}}$$

Define the inter-division time $\tau = \lim_{t \to \infty} t/\left< {\it K} \right>$. Then

$$\langle \tau \rangle_{\rm back} \leq \mathcal{T}_{\rm d} \leq \langle \tau \rangle_{\rm for}$$

where $\mathcal{T}_{\rm d} = ln\,2/\Lambda$ is the population doubling time

García-García et al., 2019

Let \mathcal{X} be a trait (phenotype): we then have, for each value x of \mathcal{X} ,

$$p_{\mathrm{back}}(K, x) = \mathrm{e}^{K \ln 2 - t \Lambda_t} p_{\mathrm{for}}(K, x)$$

and the marginals

$$p_{ ext{back}}(x) = \sum_{\mathcal{K}} p_{ ext{back}}(\mathcal{K}, x) \qquad p_{ ext{for}}(x) = \sum_{\mathcal{K}} p_{ ext{for}}(\mathcal{K}, x)$$

Defining the fitness landscape

$$h_t(x) := \frac{1}{t} \ln \frac{N(t)p_{\text{back}}(x)}{N(0)p_{\text{for}}(x)} = \Lambda_t + \frac{1}{t} \ln \frac{p_{\text{back}}(x)}{p_{\text{for}}(x)}$$

we have

$$p_{\text{back}}(x) = e^{t(h(x) - \Lambda_t)} p_{\text{for}}(x)$$

The conditional distribution $p_{\rm for}(K|x) \coloneqq p_{\rm for}(K,x)/p_{\rm for}(x)$ yields the estimator

$$h_t(x) = \frac{1}{t} \ln \sum_{\mathcal{K}} 2^{\mathcal{K}} p_{\text{for}}(\mathcal{K}|x)$$

Nozoe et al. 2017

Estimated fitness landscape $h_t(x)$ for a Moran model of $N = 10\,000$ individuals, with division rate $r(x) = e^{-x/2}$, $x \in \{0, ..., 5\}$, and t = 5. The total weight of the forward sampling yields the number N(0) of ancestors. The effective population growth rate is given by $\Lambda_t = \ln(N(t)/N(0))/t$. Only lineages surviving at t are sampled.

Trait: Cell size x

If h(x) were fully determined by x we would have $h(x) = K \ln 2/t$ Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli*

Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli*

A different nutrient

Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli*

Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli*

A different nutrient

Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli*

Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli* Estimating the biological fitness from the growth rate of a subpopulation:

$$f_x \simeq \Lambda_t(x) = rac{1}{t} \ln rac{N(x,t)}{N(x,0)} = \Lambda_t + rac{1}{t} \ln rac{p_{ ext{back}}(x,t)}{p_{ ext{back}}(x,0)}$$

Thus we obtain

$$h_t(x) - \Lambda_t(x) = \frac{1}{t} \left[\ln \frac{p_{\text{back}}(x,t)}{p_{\text{for}}(x,t)} - \ln \frac{p_{\text{back}}(x,t)}{p_{\text{back}}(x,0)} \right]$$
$$= \frac{1}{t} \ln \frac{p_{\text{back}}(x,0)}{p_{\text{for}}(x,t)} = \frac{1}{t} \ln \frac{p_{\text{for}}(x,0)}{p_{\text{for}}(x,t)}$$

Strength of selection

Measure of the strength of selection for trait \mathcal{X} :

Define

$$q_t(x) = \frac{p_{\text{back}}(x)}{p_{\text{for}}(x)} \qquad r_t(x) = \frac{p_{\text{for}}(x)}{p_{\text{back}}(x)} = \frac{1}{q_t(x)}$$

then, for an arbitrary function $g_t(x)$,

$$egin{aligned} \mathsf{cov}_{\mathrm{back}}(g_t,q_t) &= \langle g_t q_t
angle_{\mathrm{back}} - \langle g_t
angle_{\mathrm{back}} \langle q_t
angle_{\mathrm{back}} = \langle g_t
angle_{\mathrm{back}} - \langle g_t
angle_{\mathrm{for}} \ & \mathsf{cov}_{\mathrm{for}}(g_t,r_t) &= \langle g_t
angle_{\mathrm{for}} - \langle g_t
angle_{\mathrm{back}} \end{aligned}$$

and, by the Cauchy-Schwartz inequality,

$$\left|\langle g_t
angle_{ ext{for}} - \langle g_t
angle_{ ext{back}}
ight| \leq \min\left(\sigma_{ ext{back}}(g_t)\sigma_{ ext{for}}(q_t), \sigma_{ ext{for}}(g_t)\sigma_{ ext{back}}(r_t)
ight)$$

Strength of selection

Since

$$q_t(x) = e^{t(h_t(x) - \Lambda_t)}$$

we obtain

$$\Pi_{\mathcal{X}} = \operatorname{cov}_{\operatorname{for}}(h_t, \mathrm{e}^{th_t}) \, \mathrm{e}^{-t\Lambda_t} = \operatorname{cov}_{\operatorname{back}}(h_t, \mathrm{e}^{-th_t}) \, \mathrm{e}^{t\Lambda_t}$$

and

$$0 \leq \Pi_{\mathcal{X}} \leq \min\left(\sigma_{\mathrm{for}}(h_t)\sigma_{\mathrm{for}}(q_t), \sigma_{\mathrm{back}}(h_t)\sigma_{\mathrm{back}}(r_t)\right)$$

A tighter lower bound can also be obtained from Jensen's inequality applied on (*):

$$\Pi_{\mathcal{X}} \geq \frac{1}{t} \left[\frac{\sigma_{\text{for}}^{2}(h_{t})}{\exp(t\Lambda_{t})} \psi(\varphi_{\text{for}}, h_{\min}, \langle h_{t} \rangle_{\text{for}}) + \frac{\sigma_{\text{back}}^{2}(h_{t})}{\exp(-t\Lambda_{t})} \psi(\varphi_{\text{back}}, h_{\max}, \langle h_{t} \rangle_{\text{back}}) \right]$$
$$\psi(\varphi, x, \nu) \coloneqq \frac{\varphi(x) - \varphi(\nu)}{(x - \nu)^{2}} \qquad \varphi_{\text{for}}(x) \coloneqq e^{tx} \qquad \varphi_{\text{back}}(x) \coloneqq e^{-tx}$$

Genthon and Lacoste, 2021

Strength of selection

Genthon and Lacoste, 2021 Data by Kiviet et al., 2014 on *E. coli*

Role of cell death

$$N(K,\sigma,t) = \sum_{\ell \in \mathcal{L}(t)}^{\ell \in \mathcal{L}(t)} \delta_{K,K(\ell)} \delta_{\sigma,\sigma(\ell)}$$

 $\mathcal{L}(t)$: set of all lineages present at time t (**DEAD** or **ALIVE**!)

Role of cell death

$$p_{\text{for}}(K,\sigma,t) = \frac{2^{-K}N(K,\sigma,t)}{N(0)} \qquad \sigma = 0,1$$

$$p_{\text{back}}(K,\sigma=0,t) = 0 \qquad p_{\text{back}}(K,\sigma=1,t) = \frac{N(K,\sigma=1,t)}{N(t)} =: p_{\text{back}}(K,t)$$

$$p_{\text{surv}}(t) := p_{\text{for}}(\sigma=1,t) = \sum_{K} p_{\text{for}}(K,\sigma=1,t) = \frac{1}{N(0)} \sum_{K} 2^{-K}N(K,\sigma=1,t)$$

$$\Gamma_t = \frac{1}{t} \ln p_{\text{surv}}(t)$$
N.B. $p_{\text{surv}}(t) \neq N(\sigma=1,t)/|\mathcal{L}(t)| \text{ and } \Gamma_t \leq 0, \forall t$

$$\boxed{p_{\text{back}}(K,t) = e^{K\ln 2 - t(\Lambda_t - \Gamma_t)} p_{\text{for}}(K,\sigma=1,t)}$$

$$\Lambda_t = \frac{1}{t} \ln \langle 2^K \rangle_{\text{for}|\sigma=1} + \Gamma_t$$

$$\langle e^{t\Lambda_t - K\ln 2} \rangle_{\text{back}} = 1 - p_{\text{for}}(\sigma=0,t) = p_{\text{surv}}(t)$$

Genthon et al., 2023

10

Since, for $p_{\text{for}}^*(K, t) = p(K, \sigma=1, t)$,

$$egin{split} \mathcal{D}_{\mathrm{KL}}(p_{\mathrm{back}} \| p_{\mathrm{for}}^*) &= \langle \mathcal{K}
angle_{\mathrm{back}} \ln 2 - t \left(\Lambda_t - \Gamma_t
ight) \geq 0 \ \mathcal{D}_{\mathrm{KL}}(p_{\mathrm{for}}^* \| p_{\mathrm{back}}) &= - \langle \mathcal{K}
angle_{\mathrm{for}}^* \ln 2 + t \left(\Lambda_t - \Gamma_t
ight) \geq 0 \end{split}$$

we obtain the bounds

$$rac{\ln 2}{t} \left< \mathcal{K} \right>_{ ext{for}}^* \leq \Lambda_t - \Gamma_t \leq rac{\ln 2}{t} \left< \mathcal{K}_{ ext{back}} \right>$$

Role of cell death

Data by Hashimoto et al., 2016, on cytometer

Data by Hashimoto et al., 2016, on cytometer

Role of cell death

For the distribution $f(\tau | \sigma)$ of division times τ we have

$$f_{\mathrm{back}}(\tau) = 2f_{\mathrm{for}}(\tau|\sigma=1) \,\mathrm{e}^{- au(\Lambda-\Gamma)}$$

and thus

$$egin{split} \mathcal{D}_{ ext{KL}}\left(f_{ ext{back}}(au)\|f_{ ext{for}}(au|\sigma{=}1)
ight) &= -\langle au
angle_{ ext{back}}\left(\Lambda-\Gamma
ight) + \ln 2 \geq 0 \ \mathcal{D}_{ ext{KL}}\left(f_{ ext{for}}(au|\sigma{=}1)\|f_{ ext{back}}(au)
ight) &= \langle au
angle_{ ext{for}}\left(\Lambda-\Gamma
ight) - \ln 2 \geq 0 \end{split}$$

We thus have

$$\frac{1}{\left\langle \tau \right\rangle_{\rm for}} \leq \frac{1}{\mathcal{T}_{\rm d}} - \frac{\Gamma}{\ln 2} \leq \frac{1}{\left\langle \tau \right\rangle_{\rm back}}$$

and a generalized Euler-Lotka relation:

$$1 = 2 \int_0^\infty \mathrm{d}\tau \ f_{\rm for}(\tau | \sigma = 1) \, \mathrm{e}^{-\tau (\Lambda - \Gamma)}$$

Genthon et al., 2023

Inferring population growth and selection

• Quantifying selection for a fixed trait x:

$$h_t^*(x) = \Lambda_t - \Gamma_t + \frac{1}{t} \ln \frac{p_{\text{back}}(x, t)}{p_{\text{for}}^*(x, t)}$$

• Fitness of trait x:

$$\Lambda_t(x) = \Lambda_t + \frac{1}{t} \ln \frac{p_{\text{back}}(x, t)}{p_{\text{back}}(x, 0)}$$

Thus

$$h_t^*(x) = \frac{1}{t} \ln \left[\sum_{K} 2^{K} p_{\text{for}}^*(K, t|x) \right]$$

Survivor bias:

$$h_t^\dagger(x) = h_t(x) - h_t^*(x) = \Gamma_t + rac{1}{t} \ln rac{p_{ ext{for}}^*(x,t)}{p_{ ext{for}}(x,t)}$$

Genthon et al., 2023

Inferring population growth and selection

Cytometer measurements:

- Dilution rate $\rho(x)$ (depending on trait x)
- Population size without dilution: $N^{\circ}(t)$, with dilution: N(t)
- Trait history $\mathbf{x} = (\mathbf{x}(t))$

$$\begin{split} N^{\circ}(t) &= N(t) \int \mathcal{D} \mathbf{x} \ p_{\text{back}}(\mathbf{x}, \sigma = 1) \ \exp\left[\int_{0}^{t} \mathrm{d} t' \ \rho(\mathbf{x}(t'))\right] \\ &= N(t) \left\langle \exp\left[\int_{0}^{t} \mathrm{d} t' \ \rho(\mathbf{x}(t'))\right] \right\rangle_{\text{back}} \end{split}$$

Thus

$$\Lambda_t^{\circ} = \underbrace{\Lambda_t + \frac{1}{t} \ln \frac{N(0)}{N^{\circ}(0)}}_{\rightarrow 0 \text{ for } t \rightarrow \infty} + \frac{1}{t} \ln \left\langle \exp\left[\int_0^t \mathrm{d}t' \ \rho(\mathbf{x}(t'))\right] \right\rangle_{\mathrm{back}}$$

- Sampling errors: requires sampling rare lineages
- Bias if dilution and trait are correlated

Inferring population growth and selection

Mother machines: A single lineage is followed in each channel Only the forward sampling is available

$$egin{split} p_{ ext{surv}}(t) &= rac{n_{ ext{lin}}(\sigma=1,\,t)}{L} \ \Lambda_{ ext{lin}} &= rac{1}{t} \ln \left[rac{1}{L} \sum_{j=1}^L 2^{ extsf{K}_j} \delta_{\sigma_j,1}
ight] \end{split}$$

Antibiotic resistance

Data by Wakamoto et al., 2013 on *Mycobacterium smegmatis* exposed to isoniazid (INH)

Antibiotic resistance

Trait: cell size *s*; measurement at t = 36 h

Selection strength in the presence of lineage death:

$$\Pi_{\mathcal{X}} = \frac{1}{t} \int \mathrm{d}x \, \left[p_{\mathrm{back}}(x, y) - p_{\mathrm{for}}^*(x, t) \right] \ln \frac{p_{\mathrm{back}}(x, t)}{p_{\mathrm{for}}^*(x, t)}$$
$$= \langle h_t^* \rangle_{\mathrm{back}} - \langle h_t^* \rangle_{\mathrm{for}}$$

Effect of death on selection strength: $^{\circ}$ denotes the absence of dilution

$$egin{aligned} \Delta \Pi_{\mathcal{X}} &= \Pi_{\mathcal{X}} - \Pi^{\circ}_{\mathcal{X}} \ &= rac{\mathsf{cov}^{\circ}_{\mathrm{back}}(h^{\circ}_t,
ho_{\mathrm{surv}})}{\langle
ho_{\mathrm{surv}}
angle_{\mathrm{back}}} - rac{\mathsf{cov}^{\circ}_{\mathrm{for}}(h^{\circ}_t,
ho_{\mathrm{surv}})}{\langle
ho_{\mathrm{surv}}
angle^{\circ}_{\mathrm{for}}} \end{aligned}$$

Pitfalls

 Finite time: Average over many *independent* lineages to obtain *p*_{for}(*K*, *t*):

$$\begin{split} \Lambda_t &= \frac{1}{t} \ln \mathit{N}(t) = \frac{1}{t} \ln \sum_{\mathit{K}} 2^{\mathit{K}} \mathit{p}_{\rm for}(\mathit{K},t) = \frac{1}{t} \ln \left\langle 2^{\mathit{K}} \right\rangle_{\mathit{p}_{\rm for}} \\ &= \Lambda + \mathcal{O}\left(\frac{1}{t}\right) \end{split}$$

- Finite lineages number:
 - Averages are dominated by "exceptional" lineages, that are likely to be lost as time goes by
 - The mean of Λ_t approaches the most likely value of 2^K and eventually behaves as

$$\lim_{t\to\infty}\overline{\Lambda_t}=\ln 2\,r^*$$

where r^* is the most likely division rate (in the forward ensemble)

For any number L of lineages there is a time window for the best results Levien et al., 2020

Pitfalls

Levien et al., 2020

Conclusions

- Lineage statistics provide a useful tool to explore selection in microbial populations
- Comparison of forward and backward statistics provides bounds on the selection strength and other observables
- The method can encompass time-dependent phenotypes (historical fitness)
- One can take into account effects of dilution and cell death
- There is an error tradeoff between population size and runtime

Thank you!

References i

R. García-García, A. Genthon, and D. Lacoste. Linking lineage and population observables in biological branching processes.

Physical Review E, 99:042413, 2019.

A. Genthon and D. Lacoste.

Fluctuation relations and fitness landscapes of growing cell populations.

Scientific Reports, 10:11889, 2020.

A. Genthon and D. Lacoste.

Universal constraints on selection strength in lineage trees.

Physical Review Research, 3:023187, 2021.

References ii

- A. Genthon, L. Peliti, T. Nozoe, and D. Lacoste. Cell lineage statistics with incomplete population trees. PRX Life, 1:013014, 2023.
- M. Hashimoto, T. Nozoe, H. Nakaoka, R. Okura, S. Akiyoshi, K. Kaneko, E. Kussell, and Y. Wakamoto. Noise-driven growth rate gain in clonal cellular populations. Proceedings of the National Academy of Sciences, 113(12):3251-3256, 2016.

J. Hermisson, O. Redner, H. Wagner, and E. Baake. Mutation-selection balance: Ancestry, load, and maximum principle.

Theoretical Population Biology, 62:9–46, 2002.

References iii

- D. J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova, and S. J. Tans.

Stochasticity of metabolism and growth at a single-cell level. Nature, 514:376, 2014.

T. J. Kobayashi and Y. Sughiyama.

Fluctuation relations of fitness and information in population dynamics.

Physical Review Letters, 115:238102, 2015.

S. Leibler and E. Kussell.

Individual histories and selection in heterogeneous populations.

PNAS, 107:13183-13188, 2010.

References iv

- E. Levien, T. GrandPre. and A. Amir.
- Large deviation principle linking lineage statistics to fitness in microbial populations.

Physical Review Letters, 125:048102, 2020.

T. Nozoe, E. Kussell, and Y. Wakamoto.

Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data. PLOS Genetics. 13:e1006653. 2017.

- Y. Wakamoto, N. Dhar, R. Chait, K. Schneider, F. Signorino-Gelo, S. Leibler, and J. D. McKinney.

Dynamic persistence of antibiotic-stressed mycobacteria.

Science, 339(6115):91–95, 2013.