
Exercises on conformally invariant probability

Ewain Gwynne

The following is a list of exercises intended for students who are learning about the Gaussian
free field, Liouville quantum gravity, SLE, etc. Exercises are sorted by topic, but otherwise are in
no particular order.

1 General probability

Problem 1.1. Give an example of a sequence of pairs of non-constant random variables (Xn, Yn)n∈N
and a pair of non-constant random variables (X,Y ) with the following properties:

� (Xn, Yn) → (X,Y ) in law.

� Yn is a measurable function of Xn for each n ∈ N.

� X and Y are independent.

Problem 1.2. Let X, Y , and {Yn}n∈N be random variables defined on the same probability space.
Assume that (X,Yn) → (X,Y ) in law. Show that if Y is a measurable function of X, then Yn → Y
in probability.

Problem 1.3. Let (Xn, Yn)n∈N and (X,Y ) be pairs of random variables, each taking values in a
product of separable metric spaces Ω1×Ω2. Assume that (Xn, Yn) → (X,Y ) in law and that there
is a family of probability measures {Px}x∈Ω1 on Ω2, indexed by Ω1, such that for each bounded
continuous function f : Ω2 → R, we have

(E[f(Yn)|Xn], X) →
(∫

Ω1

f(y)dPX(y), X

)
in law. show that a.s. PX is the regular conditional law of Y given X.

2 Brownian motion

Problem 2.1. Let B be a standard planar Brownian motion started from 0, let L be a straight
line, and let Bε(L) be the ε-neighborhood of L. Show that there are universal constants c0, c1 > 0
such that for each ε > 0,

P[B([0, 1]) ⊂ Bε(L)] ≤ c0e
−c1/ε2 .

Problem 2.2. Let B be a standard planar Brownian motion started from 0. Let η : [0, 1] → R2

be a deterministic continuous path started from 0. Show that for each ε > 0, it holds with positive
probability (allowed to depend on η and ε) that the uniform distance between B|[0,1] and η is at
most ε.
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Problem 2.3. Let B1 and B2 be independent planar Brownian motion started from (−1, 0) and
(1, 0), respectively. For R > 1 and i ∈ {1, 2}, let τ iR be the exit time of Bi from the ball BR(0).
Show that there is an exponent α > 0 such that for each R ≥ 2,

P
[
B1([0, τ1R]) ∩ B2([0, τ2R]) = ∅

]
≤ R−α.

Remark: it follows from [LSW01] that the optimal value of α is 5/4. The proof is based on SLE.

Problem 2.4. Let B be a standard planar Brownian motion started from 0. Let K ⊂ C be a
closed set with empty interior such that 0 ∈ K. Let τ = inf{t : Bt /∈ K} be the exit time of B from
K. Does one have τ = 0 a.s.? Give a proof or a counterexample.

3 SLE

Problem 3.1. Let κ > 0 and let η be a chordal SLEκ from 0 to ∞ in H. Show that a.s. η intersects
every vertical ray {x+ iy : y ≥ 0} for x ∈ R.

Problem 3.2. Let κ ≥ 8 and let η be a chordal SLEκ from 0 to ∞ in H. Show that for each
a, b > 0,

P[η hits −a before b] > 0.

Remark: the probability is computed exactly in [Bef12, Theorem 10].

Problem 3.3. Let κ ∈ (0, 4] and let η0 (resp. η1) be a chordal SLEκ in H from 0 to ∞ (resp. from
1 to ∞). Show that

P[η0 ∩ η1 ̸= ∅] = 1.

Problem 3.4. Let K ⊂ H be a compact connected set such that H \ K is simply connected.
Show that K has positive half-plane capacity, i.e., show that limy→∞ yEiy[ImBτ ] > 0, where B is
a planar Brownian motion and τ is its exit time from H \K.

Problem 3.5. Let K ⊂ H be a compact connected set such that 0 /∈ K and H \ K is simply
connected. For κ > 0, let ηκ be an SLEκ from 0 to ∞ in H. Is κ 7→ P[ηκ∩K ̸= ∅] a non-decreasing
function of κ? Give a proof or a counterexample.

Problem 3.6. Let κ > 0 and let η be an SLEκ from 0 to ∞ in H. Show that there exists
a deterministic constant d > 0, depending only on κ, such that for each t > 0, the Hausdorff
dimension of η([0, t]) is a.s. equal to d. Remark: One can show that d = min{1+κ/8, 2} [Bef08].

Problem 3.7. Let κ ∈ (4, 8) and let η be an SLEκ from 0 to ∞ in H. Show that for each t > 0,
a.s. H \ η([0, t]) has infinitely many connected components.

Problem 3.8. Let κ > 0 and let η be an SLEκ from 0 to ∞ in H. Let U ⊂ H be open. Show that
P[η ∩ U ̸= ∅] > 0.

4 Brownian loop soup

Problem 4.1. Let L be a Brownian loop soup on D of intensity λ > 0 and let K ⊂ D be compact.

a. Show that for any value of λ, it holds with positive probability that there is a loop in L which
disconnects K from ∂D.
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b. Show that the probability that such a loop exists tends to 1 as λ→ ∞.

Problem 4.2. Let λ > 0 and let L be a Brownian loop soup on the unit disk D of intensity λ.
Consider the following two sets.

1. Let G1 be the closure of the connected component of D \
⋃

ℓ∈L ℓ which contains ∂D.

2. A cluster of L is a connected component of
⋃

ℓ∈L ℓ. The outer boundary of a cluster C is the
boundary of the connected component of D \C which contains ∂D. Let G2 be the closure of
the union of the outer boundaries of the clusters of L.

Show that G1 = G2 a.s. This set is called the gasket of L.

Problem 4.3. Let c1, c2 > 0. Let L1 and L2 be independent Brownian loop soups on D with
parameters c1 and c2. Let G1 and G2 be the corresponding gaskets. Show that if c1+ c2 > 1, then
G1 ∩G2 is totally disconnected.

Problem 4.4. Let λ > 0 and let L be a Brownian loop soup on the unit disk D of intensity λ.
Show that there exist universal constants C, β > 0 such that for each z ∈ B1/2(0), the probability

that there is a loop ℓ ∈ L which disconnects z from ∂D is at least 1− Cεβλ.

Problem 4.5. Show that there exists λ∗ ∈ (0,∞) such that the following is true for each λ > λ∗.
If L is a Brownian loop soup on D of intensity λ, then a.s. for each z ∈ D there exists ℓ ∈ L such
that ℓ disconnects z from ∂D. Remark: it can be shown (unpublished) that the optimal value of
λ∗ is λ∗ = 10, which corresponds to central charge 20. Note that the set of points which are not
disconnected from ∂D by a single loop is larger than the “gasket” of L, which consists of points
which are not disconnected from ∂D by any finite union of loops.

5 GFF

Throughout, the additive constant for the whole-plane GFF is always chosen so that the circle
average h1(0) = 0, unless otherwise stated.

Problem 5.1. Let G = (V,E) be a connected graph with a set of boundary vertices ∂V ⊂ V . Let
h be the zero-boundary GFF on G. Let x, y ∈ V \ ∂V be two distinct vertices which are not joined
by an edge. Find the conditional joint distribution of {h(x), h(y)} given {h(z) : z ∈ V \ {x, y}}.

Problem 5.2. Let G = (V,E) be a connected graph with a set of boundary vertices ∂V ⊂ V . Let
h be the zero-boundary GFF on G. Let f : V → R be a deterministic function which vanishes on
∂G. Find the Radon-Nikodym derivative of the law of h+ f with respect to the law of h.

Problem 5.3. Let h be a zero-boundary GFF on a bounded domain U ⊂ C and let {hr}r>0 be
its circle average process. Show that for each ζ > 0, it holds with probability tending to 1 as ε→ 0
that

max
{
|hε(z)| : z ∈ U ∩ (εZ2), dist(z, ∂U) ≥ ε

}
≤ (2 + ζ) log ε−1.

Problem 5.4. Let h be a zero-boundary GFF on a domain U ⊂ C and let {hr}r>0 be the circle
average process. For α ∈ R, a point z ∈ U is called an α-thick point if

lim sup
ε→0

hε(z)

log ε−1
= α.

Show that for each α ∈ R, either the set of α-thick points is a.s. empty or the set of α-thick
points is a.s. dense in U . Remark: it can be shown that the set of α-thick points is non-empty iff
α ∈ [−2, 2], see [HMP10].
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Problem 5.5. Let U ⊂ C be an open domain and let z ∈ U . Let H(U) be the Hilbert space
completion of the space of smooth, compactly supported functions on U with respect to the Dirichlet
inner product (f, g)∇ =

∫
U ∇f(z) · ∇g(z) dz. Show that the space of smooth functions on U which

are supported on a compact subset of U \ {z} is dense in H(U).

Problem 5.6. Let h be a zero-boundary GFF on a domain U ⊂ C. Fix z ∈ U . Show that the tail
σ-algebra

⋂
ε>0 σ(h|Bε(z)) is trivial.

Problem 5.7. Let h be the whole-plane GFF. Show that the inversion h(1/·) agrees in law with
h.

Problem 5.8. Let U ⊂ C be an open set and let h (resp. h0) be a free-boundary (resp. zero-
boundary) GFF on U . Show that for each bounded open set V with V ⊂ U , the laws of h0|V and
h|V are mutually absolutely continuous.

Problem 5.9. Let U ⊂ C be a simply connected open set and let h be a zero-boundary GFF
on U . Also let V ⊂ U be another simply connected open set and let z ∈ V . Let hV be the
harmonic part of h|V . Show that hV (z) is a centered Gaussian random variable with variance
log CR(z;U)− log CR(z;V ), where CR denotes the conformal radius.

Problem 5.10. Let U ⊂ C be a simply connected open domain and let GU (z, w) be the zero-
boundary Green’s function on U . Show that for each z ∈ U ,

lim
w→z

(
GU (z, w)− log

1

|z − w|

)
= − log CR(z;U)

where CR(z;U) denotes the conformal radius.

Problem 5.11. Show that the functions

ϕn(z) := (2/n)1/2Re zn and ψn(z) := (2/n)1/2 Im zn

for n ∈ N give an orthonormal basis for the space of harmonic functions on D (viewed modulo
additive constant) with respect to the Dirichlet inner product.

Problem 5.12. Let h be a free-boundary GFF on the unit disk D. Let h be its harmonic part,
with the additive constant chosen so that h(0) = 0. Find Cov(h(z), h(w)) for each z, w ∈ D. Hint:
use problem 5.11 and the orthonormal basis decomposition of the GFF.

Problem 5.13. Let h̊ (resp. h) be a zero-boundary (resp. free-boundary) GFF on H. For con-
creteness, assume that h is normalized so that h1(0) = 0.

a. Show that for any r > 0, the laws of the restrictions of h and h̊ to the semidisk Br(0) ∩H are
mutually singular.

b. Show that for any z ∈ H and any r < Im z, the laws of the restrictions of h̊ and h to Br(z) are
mutually absolutely continuous.

Problem 5.14. Let h be the whole-plane GFF. Show that for each r > 0 and each z ∈ C, the field
(h− hr(z))|Br(z) is independent from {hs(z)− hr(z) : s ≥ r}. Hint: first reduce to the case when
r = 1 and z = 0, then use the decomposition of the whole-plane GFF into the radially symmetric
part and the mean-zero part as in the definition of the quantum cone.
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6 LQG measure

Problem 6.1. Let U ⊂ C be an open set, let h be the zero-boundary GFF on U and let µh be
the γ-LQG area measure. Show that almost surely µh(V ) > 0 for each open set V ⊂ U .

Problem 6.2. Let h be a whole-plane GFF, let µh be the γ-LQG area measure, and let {hr}r>0

be the circle average process. Show that for each r > 0 and z ∈ C,

r−(2+γ2/2)e−γhr(z)µh(Br(z))
d
= µh(B1(0)).

Hint: use the LQG coordinate change formula and the scale and translation invariance of the law
of h, modulo additive constant.

Problem 6.3. Let h be a whole-plane GFF and let µh be the γ-LQG area measure. Find the limit
(in probability) of

logµh(Bε(0))

log ε

as ε→ 0. Hint: use Problem 6.2.

Problem 6.4. Let h be a whole-plane GFF and let µh be the γ-LQG area measure. For each
p ∈ (−∞, 4/γ2), compute

lim
ε→0

logE[(µh(Bε(0)))
p]

log ε
.

You may use that µh(B1(0)) has a finite pth moment for all p ∈ (−∞, 4/γ2) [RV14, Theorems 2.11
and 2.12]. Hint: use Problems 5.14 and 6.2.

Problem 6.5. Let h be the zero-boundary GFF on a domain U ⊂ C, let K ⊂ U be compact, and
let µh be the γ-LQG area measure. Show that for each ζ > 0, it holds with probability tending to
1 as ε→ 0 that

ε2+γ2/2+2γ+ζ ≤ µh(Bε(z)) ≤ ε2+γ2/2−2γ−ζ , ∀z ∈ K. (6.1)

Hint: use Problem 6.4, Chebyshev’s inequality, and a union bound argument.

Problem 6.6. Let U ⊂ C be a connected open set, let h be the zero-boundary GFF on U and let
µh be the γ-LQG area measure. Show that for any disjoint bounded open sets V1, V2 ⊂ U and any
ε > 0,

P[µh(V1) ≤ εµh(V2)] > 0.

Hint: if f is a deterministic smooth compactly supported function on U , then the laws of h and
h+ f are mutually absolutely continuous.

Problem 6.7. Let U ⊂ C be a connected open set, let h be the zero-boundary GFF on U and let
µh be the γ-LQG area measure. Show that if V ⊂ U is open and bounded with V ⊂ U , then the
law of µh(V ) is mutually absolutely continuous with respect to Lebesgue measure on (0,∞).

Problem 6.8. Let h be the whole-plane GFF and let µh be the γ-LQG area measure. For ε > 0
and z, w ∈ C, let Dε

h(z, w) be the minimal number of Euclidean balls of µh-mass ε whose union
contains a path from z to w. Show that for each fixed z, w ∈ C and each ζ > 0, it holds with
probability tending to 1 as ε→ 0 that

Dε
h(z, w) ≤ ε

− 4+γ2−
√

16+γ4

2γ2
−ζ
.

Hint: use the KPZ formula. Remark: the metric Dε
h is called Liouville graph distance. It is

known that Dε
h(z, w) ≈ ε1/dγ , where dγ is the Hausdorff dimension of the γ-LQG metric [DG18].

Hence the estimate from this problem gives a lower bound for dγ.
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Problem 6.9. Let h be a zero-boundary GFF on a bounded open set U ⊂ C. For γ ∈ (0, 2), let
µγh be the γ-LQG area measure. Show that γ 7→ µγh is continuous in probability with respect to the
Prokhorov distance for measures on U .

7 LQG metric

Problem 7.1. Let h be a whole-plane GFF, let Dh be the γ-LQG metric, and let {hr}r>0 be the
circle average process. Show that

{r−(2+γ2/2)e−γhr(z)Dh(rz, rw)}z,w∈C
d
= {Dh(z, w)}z,w∈C.

Problem 7.2. Let h be a whole-plane GFF, let µh be the γ-LQG area measure, and let Dh be the
γ-LQG metric. Conditional on h, let z be sampled from µh|B1(0), normalized to be a probability
measure. Find the limit (in probability) of

logDh(z, ∂Bε(z))

log ε

as ε→ 0. Hint: What kind of log singularity does one have at z? Also use [DFG+20, Proposition
3.14].

Problem 7.3. Let h be a whole-plane GFF and let Dh be the γ-LQG metric. Let K1,K2 ⊂ C be
disjoint compact sets.

a. Show that for each ε > 0,
P[Dh(K1,K2) < ε] > 0.

b. Show that the law of Dh(K1,K2) is mutually absolutely continuous with respect to Lebesgue
measure on (0,∞).

Problem 7.4. Let h be a whole-plane GFF and let Dh be the γ-LQG metric. Show that for any
Euclidean-compact set K ⊂ C, one has

lim
R→∞

Dh(K, ∂BR(0)) = ∞,

where BR(0) is the Euclidean ball of radius R centered at 0. Hint: Use a scaling argument to
estimate Dh(∂B2k(0), ∂B2k+1(0)) for each k ∈ N.

Problem 7.5. Let h be a whole-plane GFF and let Dh be the γ-LQG metric. For s > 0, we define
the filled LQG metric ball B•

s (0;Dh) to be the union of the LQG metric ball B•
s (0;Dh) of radius s

centered at 0 and the points which it disconnects from ∞. Show that for every s > 0,

P[B•
s (0;Dh) ̸= Bs(0;Dh)] > 0.

Remark: One can in fact show that a.s. B•
s (0;Dh) ̸= Bs(0;Dh), see [GPS22, Theorem 1.14] for a

much stronger statement.

Problem 7.6. Let h be a whole-plane GFF and let Dh be the γ-LQG metric. We define the metric
net

N (0;Dh) :=
⋃
s>0

∂B•
s(0;Dh),

where B•
s(0;Dh) is as in Problem 7.5. Show that for each fixed z ∈ C \ {0},

P[z ∈ N (0;Dh)] = 0.
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Problem 7.7. Let h be a whole-plane GFF and let Dh be the γ-LQG metric. Let K ⊂ C be
compact. Show that for each ζ > 0, it holds with probability tending to 1 as ε→ 0 that

Dh(around B2ε(z) \Bε(z)) ≤ ε−ζDh(across B2ε(z) \Bε(z)), ∀z ∈ K.

Problem 7.8. Let (C, h, 0,∞) be an α-quantum cone for α ∈ (−∞, Q). Let µh be the γ-LQG
area measure and let Dh be the γ-LQG metric. Let Bs(0;Dh) denote the LQG metric ball of radius
s centered at 0. Show that for each p ∈ (0, 1), there exists C = C(p, α, γ) > 1 such that for each
s > 0,

P

[
C−1sdγ ≤ µh(Bs(0;Dh)) ≤ Csdγ

]
≥ p.

Problem 7.9. Let h be the whole-plane GFF and let Dh be the γ-LQG metric. For s > 0, let
Bs(0;Dh) be the LQG metric ball of radius s centered at 0.

a. Show that there is an α = α(γ) > 0 such that with probability at least 1−O(εα), the LQG ball
BDh(0,∂D)(0;Dh) contains the Euclidean ball of radius ε centered at 0.

b. Show that for every p > 0, it holds with probability at least 1 − O(εp) that BDh(0,∂D)(0;Dh)
contains a Euclidean ball of radius at least ε (not necessarily centered at 0).

Hint: for part b, use the “near independence across concentric annuli” lemma.

Problem 7.10. Let h be the whole-plane GFF and let Dh be the γ-LQG metric. Show that there
exists a deterministic constant C = C(γ) > 0 such that for each compact set K ⊂ C, it is a.s. the
case that for each small enough ε > 0 and each z ∈ K, each Dh-geodesic (between any two points
on C) crosses between the inner and outer boundaries of the annulus Bε1/2(z) \ Bε(z) at most C
times. Hint: use the “near independence across concentric annuli” lemma and a union bound over
possible center points z. Remark: this property can be used to show that LQG geodesics do not
locally look like SLEκ curves for any κ, see [MQ20].

Problem 7.11. Show that the locality axiom in the definition of the LQG metric is redundant.
That is, let h 7→ Dh be a measurable function from generalized functions on C to metrics on C
such that when h is a GFF plus a continuous function, a.s. Dh induces the Euclidean topology on
C, is a length metric, and satisfies the Weyl scaling and LQG coordinate change axioms. Show that
for any deterministic open set U ⊂ C, a.s. Dh(·, ·;U) is a measurable function of h|U . Remark:
The locality axiom is nevertheless included as an axiom since it is frequently useful when studying
the LQG metric and it is not an obvious consequence of the other axioms. Moreover, the locality
axiom does not follow from the other axioms if one does not assume a priori that the metric
is a measurable function of the GFF h, so one has to prove a version locality before proving
measurability, see [GM20].
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