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Why should we trust equilibrium statistical mechanics?

Empirical fact: Equilibrium statistical mechanics correctly describes the behaviour of
thermodynamic observables in physical systems with many degrees of freedom.

Consider a mechanical system {qi , pi}, i = 1, ...,N � 1, with Hamiltonian H(q, p), whose
evolution reads {

q̇i = ∂H
∂pi

ṗi = − ∂H
∂qi

,

and some observable F(q, p).

Time average:

F = lim
T→∞

1
T

∫ T

0
F(q(t), p(t)) dt

(measured in experiments)

Phase average (microcanonical):

〈F〉E =
1

ω(E)

∫
F(q, p)δ(H(q, p)−E)DqDp

(equilibrium statistical mechanics)

• Phase averages can be computed (at least in principle) once H(q, p) is known.
• F = 〈F〉E −→ validity of statistical mechanics
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Birkhoff theorem

• Ω: invariant part of the phase space with a finite volume
• F : Ω→ R phase function summable over Ω, determined at all points X ∈ Ω

Then Birckhoff theorem states that:

1. The limit

F = lim
T→∞

1
T

∫ T

0
F(X(t))dt (1)

exists for almost all initial conditions ∈ Ω.

2. If Ω cannot be divided into invariant subsets of positive measures (metrical
indecomposability), then

F =
1

µ(Ω)

∫
Ω
F(X)DX . (2)

where µ(Ω) is the Lebesgue measure.
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Ergodicity and chaos

As a consequence, time averages and microcanonical phase averages coincide if
• Ω = Ω(E) is the phase-space hypersurface at constant energy E ;
• Ω(E) is metrically indecomposable.

One may assume the metrical indecomposability of Ω(E).
• “Any” trajectory is allowed to explore the “whole”
hypersurface H(q, p) = const. (excluding sets with
vanishing measure);

• equivalent to the ergodic hypothesis.

Arguments in favour of this point of view are usually based on chaos theory:
validity of equilibrium statistical mechanics ←→ positive Lyapunov exponents.
P. Gaspard, “Chaos, Scattering and Statistical Mechanics”, Cambridge Univ. Press, (1998)

−→ Validity of statistical mechanics crucially depends on the properties of the dynamics
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Limits of ergodicity

Unfortunately, in many cases Ω(E) is not metrically indecomposable.

E.g., if the dynamics admits an integral of
motion I(X) 6= H(X), the condition
I(X) = const. will in general cut Ω(E) into
two invariant sets.

H(X) = const. is, in principle, as significant
as any other I(X) = const. hypersurface: we
should take into account all constraints
coming from independent integrals.

• If we knew the values of all first integrals I1, I2, ..., In, in principle we could compute
phase averages over some phase-space set Ω′(E , I1, ..., In), introducing some
generalized microcanonical ensemble.

• The above strategy is for sure unfeasible in integrable systems, where N independent
conserved quantities can be found.
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Khinchin’s approach: beyond ergodicity

Under rather general assumptions, Khinchin showed that if
• the system is composed by a large number of degree of freedom, i.e. N � 1;
• the particles interact weakly;
• we limit our attention to the sum functions usually encountered in statistical
mechanics, of the form

F(q, p) =
N∑
i=1

f (qi , pi )

then:

the relative measure of the sets of points for which∣∣∣ F〈F〉 − 1
∣∣∣ > KN−1/4 K = const.

is a small quantity ≤ O(N−1/4).

A.I.Khinchin, “Mathematical Foundations of Statistical Mechanics”, Dover, New York, (1949)

−→ Validity of statistical mechanics due to the large number of degrees of freedom and
the sensible choice of the observables.
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Purpose

Two alternative interpretations:

• Equilibrium as a property of the model
• Equilibrium as a property of the chosen observable

A quite severe test to the latter is the study of integrable systems, where no chaotic
behaviour is present.

We will focus on the Toda model (nonlinear integrable Hamiltonian) and harmonic
systems (trivially integrable)

Idea: numerical study of canonical variables which do not diagonalize H(q, p).

• Does this description reach thermalization in Khinchin’s sense?
• Do time averages over long trajectories coincide with phase averages?

−→ Possible analogy with thermalization in quantum mechanics:
• Is unitary dynamics an obstacle to thermalization?
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Toda: an integrable model

Toda model:

H(q, p) =
N∑
i=1

p2i
2

+
N∑
i=0

V (qi+1 − qi ) , with V (x) = e−x + x − 1 .

M.Toda, “Vibration of a Chain with Nonlinear Interaction”, J. Phys. Soc. Jpn. 22, 431-436 (1967)

• Completely integrable nonlinear Hamiltonian system;
• a set of N independent integrals of motion is known;
• solitonic solutions, close relation to the FPUT Hamiltonian and its phenomenology.

Small energy
≈ harmonic oscillators chain Energy ' O(1) High energy

≈ hard spheres in 1D
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Integrals of Toda model

Defining Xi = e−(qi+1−qi ), Hénon showed that N integrals of the Toda model with
periodic boundary conditions can be found as

Im =
∑

pi1 ...pik (−Xj1 )...(−Xjl ) , with k + 2l = m ,

where the sum is computed over all m-uples (i1, ..., ik , j1, j1 + 1, ..., jl , jl + 1), with no
repetition of indexes, leading to different terms.
M.Hénon, “Integrals of the Toda lattice”, Phys. Rev. B 9, 1921 (1974)

The complete integrability can be also proved by considering the Lax pair:Lei = 1
2

[
X1/2
i ei+1 + X1/2

i−1ei−1 − piei

]
Pei = 1

2

[
X1/2
i ei+1 − X1/2

i−1ei−1

]
.

It can be easily verified that
d
dt
L(t) = [P(t),L(t)]

is equivalent to the original dynamics −→ the eigenvalues of L are invariant in time.
H.Flaschka, “The Toda lattice. II. Existence of integrals”, Phys. Rev. B 9, 1924–1925 (1974)
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Relation with the FPUT problem

In the Fermi-Pasta-Ulam-Tsingou numerical experiment, the nonlinear Hamiltonian model

HFPUT (q, p) =
N∑
i=1

p2i
2

+
N∑
i=0

[1
2

(qi+1 − qi )2 +
α

3
(qi+1 − qi )3 +

β

4
(qi+1 − qi )4

]
is prepared in a initial condition such that all energy is assigned to the first Fourier mode:

ω2
kQ

2
k = P2

k =
{
E0 k = 1
0 k 6= 1 .

where {
Qk =

√
2

N+1
∑N

i=1 qi sin
(
πik
N+1

)
Pk =

√
2

N+1
∑N

i=1 pi sin
(
πik
N+1

)
,

ωk = 2 sin
πk

2(N + 1)

Despite the presence of nonlinearity, for small specific energies the normal modes take
extremely long times to reach equipartition.
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Relation with the FPUT problem

FPUT Toda

G.Benettin, H.Chrisodoulidi, A.Ponno, “The Fermi-Pasta-Ulam Problem and Its Underlying Integrable
Dynamics”,J Stat Phys (2013) 152:195–212

Energy distribution between normal modes identical to the Toda case for quite long times.

−→ FPUT phenomenology seems to be due to its similarity with Toda model.

A.Vulpiani Equilibrium and thermalization in the Toda model 11/27



Introduction Toda model Thermalization Equilibrium Harmonic Systems Conclusions and perspectives

Thermalization to equilibrium

• Toda model is completely integrable, but in general Im will depend on all Fourier
modes.

• It is observed that, when energy is small, Fourier modes take extremely long times to
equilibrate in the Toda model

• ... but is this also true for specific energy ' O(1)?

We know that there exist N conserved quantities that will never equilibrate.
But if we can observe equilibration for other sets of canonical variables, this means that
equilibrium is an observable-dependent property −→ Khinchin’s perspective

Numerical experiment “FPUT-like”:
1. initialize the system in a state in which only the first Fourier mode is excited: atypical

initial condition;
2. consider cumulative time averages for the harmonic energy of the k-th mode
3. verify equipartition.

M.Baldovin, A.Vulpiani, G.Gradenigo, “Statistical mechanics of an integrable system”, J Stat Phys
(2021) 183, 41
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“FPUT-like” numerical experiment

〈Ek〉t =
∫ t

0
ds Ek(s) 〈Etot〉t =

∫ t

0
ds
∑
k

Ek(s) uk(t) =
〈Ek〉t
〈Etot〉t

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1  10  100  1000

E/N ≈ 14.3

u
k
(t

) 
=

 〈
E

k
〉 t
 /

 〈
E

to
t〉

t

k

t = 2⋅10
1

t = 2⋅10
2

t = 2⋅10
3

t = 2⋅10
4

t = 2⋅10
5

t = 2⋅10
6

A.Vulpiani Equilibrium and thermalization in the Toda model 13/27



Introduction Toda model Thermalization Equilibrium Harmonic Systems Conclusions and perspectives

Spectral density

Spectral entropy: Ssp(t) = −
N∑

k=1

uk(t) log uk(t)

Density of effective degrees of freedom: neff(t) =
exp (Ssp)

N
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• Relaxation time
increasing for
decreasing energies

• Consistent with
previous results about
harmonic localization
in low-energy FPUT
and Toda
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First integrals
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Technical note: we consider fixed boundary conditions:
the complete set of first integrals {Jn} is obtained as the N first integrals with even index
in a chain of 2N particles with periodic BC and antisymmetric initial conditions.

In order to be sure that our numerical approach is working correctly, we should check all
first integrals...
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Numerical stability

We are using a symplectic Velocity Verlet Update. It can be shown1 that symplectic
integrators preserve the Hamiltonian flux, but for a correction depending on ∆t.

t∗ −→ Time at which neff ≥ 0.5.
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• The plateau at small ∆t seems to exclude the possibility of artifact thermalization due
to numerical effects.

1G.Benettin, A.Giorgilli, “On the Hamiltonian interpolation of near-to-the-identity symplectic
mappings with application to symplectic integration algorithms”, J. Stat. Phys. 74, 1117 (1994)
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Equilibrium properties

Canonical partition function (potential part):

Z(P)
N (β) = eβN

∫ ∞
−∞

N+1∏
i=1

dri e
−β
∑N+1

i=1
exp(−ri ) δ

(
N+1∑
i=1

ri

)
.

We can take the Lalpace transform and compute Z(P)
N (β) as a Bromwich integral:

Z(P)
N (β) = eβN

∫ s0+i∞

s0−i∞

ds
2πi

∫ ∞
−∞

N+1∏
i=1

dri exp

(
−β

N+1∑
i=1

exp(−ri ) + s
N+1∑
i=1

ri

)

= eβN
∫ s0+i∞

s0−i∞

ds
2πi

exp
{
N log zβ(s)

}
with

zβ(s) =
∫ ∞
−∞

dr exp
(
−βe−r + sr

)
−→ Saddle point: ψ(s) = log(β)

• Equilibrium averages can be derived in the canonical ensemble.
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Thermodynamic observables

Average kinetic and potential energy can be
studied as functions of the specific energy
ε = E/N.

• “Equilibrium” initial conditions
(equipartition between kinetic degrees of
freedom)

• Agreement between time averages
(simulations, points) and phase averages
(theory, lines).
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An exact relation can be also found for the
specific heat. It can be numerically tested by
measuring energy fluctuations in subsets of
the chain.

• “Severe” test.
• Worse agreement at high energies due to
hard spheres limit?
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Fourier modes
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• The energy of Fourier modes decorrelates in finite time;
• Energy distribution ∝ exp(−βEk)
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Thermalization of Harmonic Systems

Consider now the harmonic system

H(q, p) =
N∑
i=1

p2i
2

+
N∑
i=0

1
2

(qi+1 − qi )2

if the initial condition is such that if only one harmonic k is excited, for all q 6= k, energy
is never shared among Fourier modes due to the lack of interaction.
Introduce the variables:

zk =
Pk + iQk√

2ωk
, z∗k =

Pk − iQk√
2ωk

and a "random rotation" M(θ) i.e. a unitary matrix depending of N angles θ1, θ2, ..., θN ,
and the new (random) Fourier modes

Zk(θ) =
∑
q

Mkq(θ)zq

Let us wonder what happen if we look at the the variables Zk(θ), in particular the
relaxational dynamics when energy is initially fed to a single random mode.
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Numerical Results for the random Harmonic Systems

• The behavior of the density of effective degrees of freedom: neff(t) = exp(Ssp)
N

obtained by the spectral entropy: Ssp(t) = −
∑N

k=1 uk(t) log uk(t)
is quite similar to that one observed for the Toda.
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Time correlation and energy distribution of the random modes
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Considerations of the statistical features of the random Harmonic Systems

• In some sense, anyone of the N random modes plays a role akin to that of a particle in
the harmonic chain; this is evident from the time autocorrelation function for the
random Fourier modes for the harmonic system.

• Physically, the difference between random modes and particles is that the former are
all in interaction while the latter have only first neighbour interactions. Despite
integrability thermalization is observed even in the harmonic chain, provided the “right
variables” are considered.

• What is most remarkable, thermalization looks as the typical phenomenon, while the
lack of it is specific only to the representation of the chain configuration in Fourier
space.

• The idea that in the large-N limit the relevant thermodynamic properties of a system
cannot be tight to a particular choice of coordinates.
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What about quantum mechanics?

A related problem about thermalization and equilibrium is found in quantum mechanics of
many-body isolated systems:

• unitary evolution of the state ψ;
• large dimensionality D of the Hilbert space H corresponding to a certain energy shell;
• justification needed to thermalization and equilibrium.

Idea of Von Neumann’s “Quantum Ergodic Theorem”:
If the Hilbert space is divided into orthogonal subspaces Hν with dimHν = dν , and such
dνs are large enough, then

||Pνψt ||2 ≈
dν
D

for all ν ,

for most choices of the decomposition, where Pν is the projection operator for the
subspace Hν .

S.Goldstein, J.L.Lebowitz, R.Tumulka, N.Zanghi, “Long-Time Behavior of Macroscopic Quantum
Systems: Commentary Accompanying the English Translation of John von Neumann’s 1929 Article on
the Quantum Ergodic Theorem”, European Phys. J. H 35: 173-200 (2010)
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Some conclusions

1. Even starting from atypical initial conditions, as in the “FPUT-like” experiment, we
observe thermalization in Toda model, as soon as “generic” canonical coordinates are
chosen (i.e., not those diagonalizing the dynamics).

2. In typical conditions, fair agreement between phase averges and time averages is found.

3. Integrability does not seem to hinder thermalization and the applicability of statistical
mechanics −→ The possibility to reach equilibrium is linked to the choice of the
observables, rather than to the features of the dynamics.

4. In this sense, statististical mechanics of integrable systems is the classical analogue of
many-body quantum mechanics: also in the latter case , for most “descriptions” of the
system, equilibrium is reached despite the unitary evolution (Von Neumann’s
“Quantum Ergodic Theorem”).
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Thank you for your attention
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