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Differential Algebraic Geometry

Three possible languages to study differential equations: the

classical language, the geometric language and the language of

differential algebra.—(Yuri Manin, 1979)

A subject, founded by Ritt and Kolchin (1950-70s), aims to
study algebraic differential equations based on algebraic
geometry and commutative algebra.

Basic object: differential variety (i.e., the solution set of a
system of algebraic differential equations)

Main Problems: algebraic theory and algorithms around
differential equation solving.
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Relationship with Model Theory

The origins of model theory and differential algebra may be

starkly different in character, but in recent decades large parts

of these subjects have developed symbiotically. (Scanlon 2002)

Robinson’s insight (1950s): model theory provides differential
algebra with the notion of differentially closed fields.

Effectiveness of stability-theoretic tools in differential algebra:

Jacobi’s bound conjecture (Hrushovski 2004),

Existence of differential Chow varieties (to be presented)...

Differential closed fields serve as proving and testing grounds
for pure model theory.

“the least misleading example for many model-theoretic

phenomena” (Sacks, 1972).
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Outline

Motivation: Algebraic Chow forms and Chow varieties

Ordinary differential Chow forms and Chow varieties

Partial differential Chow forms and a type of partial
differential Chow varieties

Summary and Problems
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Motivation

Chow-van der Waerden (Math. Ann., 1937) pointed out:

Simple examples:

Points: Cartesian coordinates

Lines in P3: Plücker coordinates

Linear spaces: Grassmann coordinates
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Example: Plücker coordinates

Let V be a line in P3 defined by{
a00x0 + a01x1 + a02x2 + a03x3 = 0
a10x0 + a11x1 + a12x2 + a13x3 = 0.

Plücker coordinates of V : (p01, p02, p03, p12, p13, p23) ⊂ P5,
where

pij = a0ia1j − a0ja1i .

The variety of lines: p01p23 + p02p31 + p03p12 = 0.

Algebraic varieties: Chow coordinates and Chow varieties

(was developed based on the theory of algebraic Chow forms)
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Algebraic Chow forms (Chow, 1937)

Let V =
∑l

i=1 siVi be a d-cycle in Pn (dim(Vi ) = d).

Let Li = ui0y0 +ui1y1 + · · ·+uinyn (i = 0, . . . , d): hyperplanes

Chow form of V: a unique poly F (uij) =
∑

ω cωMω(uij) s.t.

F (uij) = 0⇐⇒ V ∩di=0 (Li = 0) 6= ∅.

Chow coordinates of V: coefficients (cω) ∈ PN .

Degree of V: deg(V) = deg(F , (uij)
n
j=0) = g .

Poisson-product formula: F = A
∏g

τ=1(u00ξτ0 + · · ·+ u0nξτn).
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Chow varieties

Theorem(Chow, 1937) The set of Chow coordinates of all
d-cycles of degree g is a variety in PN , called Chow variety.

Remark. The Chow construction is the first construction of
moduli space of varieties.

Examples of applications:

Chern classes on algebraic varieties with arbitrary
singularities (Wu, 1984);

Counting problems in geometry;

Arakelov theory and diophantine applications.
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Ordinary Differential Chow Forms
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Ordinary Differential Chow Forms (Gao-Li-Yuan, 2013)

Let V ⊂ An be an irr. δ-variety of dimension d and order h.

Li = ui0 + ui1y1 + · · ·+ uinyn (i = 0, . . . , d): δ-hyperplanes.

By GDIT, there exists a unique F (uij) =
∑

ω cωMω(uij) s.t.

sat(F ) = 0“⇐⇒ ”V ∩ V(L0, . . . , Ld) 6= ∅.

Def. F is called the δ-Chow form of V

δ-Chow coordinate of V : the point (cω).

Example: V = V(y ′ − y) ⊂ A1

δ-Chow form of V : F = u′00u01 − u00u
′
01 − u00u01;

δ-Chow coordinate of V : (1,−1,−1, 0, 0, 0, 0, 0, 0, 0) ∈ P9.
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New invariants of differential varieties

Properties of δ-Chow form F (u0, . . . ,ud):

ord(F ) = h = ord(V ).

F is δ-homogenous of deg m in each ui .
m: δ-deg of V .

Poisson-product formula: F = A
∏g
τ=1(u00 +

∑n
j=1 u0jξτ j)

(h).

The g points (ξτ1, . . . , ξτn) are the only common points of

V , L1 = 0, . . . , Ld = 0,a L
(0)
0 = 0, . . . ,a L

(h−1)
0 = 0.

g : leading δ-degree of V .

If ai0 +
∑n

j=1 aijξτ j = 0 (i = 0, . . . , d), then F (aij) = 0.

The above V is called of index (d , h, g ,m).
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Ordinary Diff Chow variety

δ-cycle: V =
∑

i siVi (Vi ⊆ An irr. of dim d , order h).

C(d ,h,g ,m) ,
{
δ-Chow coordinates of V of index (d , h, g ,m)

}
.

Definition: C(d ,h,g ,m) is called a δ-Chow variety, if it is a

δ-constructible set.

Existence of δ-Chow varieties:

For g = 1, δ-Chow varieties exists. (Gao-Li-Yuan, 2013)

A constructive proof.

δ-Chow varieties C(d ,h,g ,m) exist. (Frietag-Li-Scanlon, 2017)

A model-theoretical proof.
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Ingredients of the proof

δ-chown(d , h, g ,m) =
{

diff cycles in An of index (d , h, g ,m)
}

.

chown(d , s): the Chow variety in An of dim d and degree s.

δ-chown(d , h, g ,m) 3
∑`

i=1 Vi

↓ φ
D2⋃

e=D1

chown(h+1)(d(h + 1) + h, e) 3
∑`

i=1 Bh(Vi )

Theorem. The image C is δ-constructible and the map φ identifies
δ-chown(d , h, g ,m) with C.

Tools:

Definability results in the model theory of ACF0 and DCF0;

Moosa-Scanlon’s prolongation theory of jet spaces.
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Partial Differential Chow Forms
and Chow Varieties
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Partial differential Chow form: problem

Let V ⊆ An be an irreducible ∆(= {δ1, . . . , δm})-variety of
dimension d .

Li = ui0 + ui1y1 + · · ·+ uinyn (i = 0, . . . , d): ∆-hyperplanes.

S :=
{

(uij)
d ,n
i ,j=0 : V ∩ V(L0, . . . , Ld) 6= ∅

}cl
.

Problem: There may not exist a single F s.t. S = V(sat(F )).

Non-Example. Let m = 2, V = V(δ1(y), δ2(y)) ⊂ A1. Here

S = V(sat(u01δ1(u00)− u00δ1(u01), u01δ2(u00)− u00δ2(u01)).

Def. If S = V(sat(F )), then call F the ∆-Chow form of V .

For which varieties V , the ∆-Chow form of V exists?
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Def. If S = V(sat(F )), then call F the ∆-Chow form of V .

For which varieties V , the ∆-Chow form of V exists?
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A type of ∆-Chow varieties (Li, 2017)

Theorem. If ωV (t) = (d + 1)
(t+m

m

)
−
(t+m−s

m

)
, then the ∆-Chow

form F of V exists. Moreover, ord(F ) = s and

F is ∆-homogenous of degree r in the coefficients of each Li .

r : ∆-degree of V .

Conjecture. The above condition is also a necessary one.

Let ∆-Chown(d , s, r) be the set of all irr. ∆-varieties V ⊆ An with
ωV (t) = (d + 1)

(
t+m
m

)
−
(
t+m−s

m

)
and ∆-deg(V ) = r .

Theorem. ∆-Chown(d , s, r) is a ∆-constructible set.
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Summary

The theory of ordinary differential Chow forms and differential
Chow varieties is established, and limited results are obtained in
the partial differential case.

Further Problems:

Constructive proof for the existence of δ-Chow varieties;

Conjecture on the the existence of ∆-Chow forms;

How to give coordinate representations and parameter space
for general ∆-varieties?
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