
Counting of Teams in First-Order Team Logics

Juha Kontinen

November 30, 2018

Introduction

I This is joint work with A. Haak, F. Müller, H. Vollmer, and F.
Yang.

I The question of the power of counting arises in propositional
and predicate logic in a number of contexts. We do extend
logics by counting constructs but consider functions arising
form counting tuple and relations satisfying a fixed formula.

I A fundamental counting problem on propositional formulas,
#SAT, counts the number of satisfying assignments of a given
formula. It is complete for Valiant’s class #P that counts
accepting paths of nondeterministic polynomial-time Turing
machines.

I The class #P is the counting analogue of NP corresponding to
existential second order logic, where the quantified relation
encodes accepting computation paths of NP-machines. Hence,
if we define #FOrel to count accepting assignments to free
relational variables in FO-formulae, we obtain #FOrel = #P.
[Saluja et al., 95].

Introduction cont.

I We consider a different model-theoretic way to study counting
processes using team-based logics. Here, formulae with free
variables are evaluated not for a single assignment to these
variables but for sets of such assignments.

I We define #FOteam to be the class of functions counting
teams that satisfy a given FO-formula, and similarly for
extensions of FO by various dependencies in team semantics.

Preliminaries

I Formulae of first-order logic (FO) are defined by the following
grammar:

ϕ ::= ϕ∧ϕ | ϕ∨ϕ | ∃xϕ | ∀xϕ | R(t) | ¬R(t) | t1 = t2 | ¬t1 = t2

I We consider finite ordered structures with a finite vocabulary σ
consisting of relation and constant symbols.

I The class of such σ-structures is denoted by STRUC[σ]. We
write encσ(A) for the binary encoding of a σ-structure A.

Basics of team semantics

For a team X , a structure A , and φ ∈ FO, A |=X φ is def. by:

I A �X α for α a literal, iff for all s ∈ X , A �s α.

I A |=X ϕ ∨ ψ, iff there are teams Y ,Z ⊆ X s.t. Y ∪ Z = X ,
A |=Y ϕ and A |=Z ψ.

I A |=X ϕ ∧ ψ, iff A |=X ϕ and A |=X ψ.

I A |=X ∃xϕ, iff there exists a function F : X → P(A) \ {∅}, s.t.
A |=X [F/x] ϕ.

I A |=X ∀xϕ, iff A |=X [A/x] ϕ.

Team semantics cont.

I A sentence ϕ is true in A, written A |= ϕ, if A |={∅} ϕ.

I First-order formulae ϕ are flat, i.e., A �X ϕ, iff A �s ϕ for all
s ∈ X .

The semantics of the relevant dependency atoms are defined by:

I A |=X=(x , y), iff for all s, s ′ ∈ X , if s(x) = s ′(x), then
s(y) = s ′(y).

I A |=X x⊥yz , iff for all s, s ′ ∈ X such that s(y) = s ′(y), there
exists s ′′ ∈ X such that s ′′(y) = s(y), s ′′(x) = s(x) and
s ′′(z) = s ′(z).

I A |=X x ⊆ y , iff for all s ∈ X there is s ′ ∈ X such that
s(x) = s ′(y).

Dependence, independence, and inclusion logic

We recall some basic properties of FO(=(. . .)), FO(⊆), and FO(⊥):

I Formulae of FO(=(. . .)) are closed downwards, i.e., A |=X ϕ
and Y ⊆ X imply A |=Y ϕ.

I formulae of FO(⊆) are closed under unions, i.e., A |=X ϕ and
A |=Y ϕ imply A |=X∪Y ϕ.

I Formulae of any of these logics have the empty team property,
i.e., A |=∅ ϕ always holds.

Expressive power of team based logics

Recall that existential second-order logic (Σ1
1) consists of formulas

of the form ∃R1 . . . ∃Rkϕ, where ϕ is a first-order formula.

Theorem

1. For every σ-formula ϕ of FO(⊥), there is an σ(R)-sentence
ψ(R) of Σ1

1 such that for all σ-structures A and teams X 6= ∅,

A |=X ϕ ⇐⇒ (A, rel(X)) |= ψ(R), (1)

and vice versa.

2. The above holds for FO(=(. . .)) as well, except that in both
directions for FO(=(. . .)) the relation symbol R is assumed to
occur only negatively in the sentence ψ(R).

3. For any sentence ϕ ∈ FO(⊆), there exists an equivalent
sentence ψ of positive greatest fixed point logic (posGFP) and
vice versa.

Propositional and quantified Boolean formulae

I We use CNF to denote propositional formulae in conjunctive
normal form and k-CNF to denote the class such formulae
where each clause contains at most k literals.

I A formula in CNF is the class DualHorn, if each of its clauses
contains at most one negative literal.

I For a class C of formulae, we denote by Σ1-C the class of
quantified Boolean formulae in prenex normal form with only
existential quantifiers where the quantifier-free part is is an
element of C.

I With C+(resp. C−) we denote the class of formulae in C whose
free variables occur only positively (resp. negatively).

Counting problems and classes

Definition
A function f : {0, 1}∗ → N is in #P, if there is a non-deterministic
TM M such that for all inputs x ∈ {0, 1}∗:

f (x) = the number of acc. computation paths of M with x .

This definition can be generalized as follows.

Definition
Let C be a complexity class. A function f : {0, 1}∗ → N is in # · C, if
there is a language L ∈ C and a polynomial p s.t. for all x ∈ {0, 1}∗:

f (x) = |{y | |y | ≤ p(|x |) and (x , y) ∈ L}|.

Now #P = # · P, and #P ⊆ # · NP.

Logically defined counting classes

Definition
A function f : {0, 1}∗ → N is in #FOrel, if there exists:

I a vocabulary σ with a built-in linear order ≤,

I an FO[σ]-formula ϕ(R1, . . . ,Rk , x1, . . . , x`) with free variables
R1, . . . ,Rk and x1, . . . , x`,

s.t. for all σ-structures A,

f (encσ(A)) = |{(S1, . . . ,Sk , c1, . . . , c`) | A � ϕ(S1, . . . ,Sk , c1, . . . , c`}|.

If the input of f is not of this form, we assume f takes the value 0.

Logically defined counting classes

In the same fashion, subclasses of #FOrel, such as #Σrel
k and #Πrel

k

for arbitrary k , are defined by assuming that the formula ϕ in the
above definition is in the corresponding fragments Σk and Πk .

Theorem (Saluja et al., 95)

#Σrel
0 = #Πrel

0 ⊂ #Σrel
1 ⊂ #Πrel

1 ⊂ #Σrel
2 ⊂ #Πrel

2 = #FOrel =
#P.

Furthermore, it was shown that #Σrel
0 ⊆ FP.

A word on reductions

I Let f and h be counting problems. We say that f is
parsimoniously reducible to h if there is a polynomial-time
computable function g such for all inputs x , f (x) = h(g(x)),

I f is Turing reducible to h if f ∈ FPh,

I f is metrically reducible to h if there are polynomial-time
computable functions g1, g2 such for all inputs x ,
f (x) = g2(h(g1(x)), x). Note that metric reductions are thus
Turing reductions with one oracle query.

For F a class of quantified Boolean formulae, #F is the function
that, given a formula ϕ ∈ F , outputs the number of satisfying
assignments of ϕ. The functions #SAT and #3-CNF, are complete
for #P under parsimonious reductions, while, e.g., #DNF and
#2-CNF+ are complete for #P under metric reductions.

Example: #CNF vs. #DNF

We briefly explain why #DNF is #P-complete by reducing #CNF
to it.

Suppose a CNF-formula ψ(p1, ..., pn) is given as an input. Now the
number of satisfying assignments for ψ can be computed as follows.

1. Transform ¬ψ to DNF-form and calculate the number k of
satisfying assignments of it,

2. Output 2n − k.

Note that if this reduction could be made parsimonious, then the
decision problem CNF would reduce to DNF which is unlikely.

Counting of teams

Definition
For any set A of atoms, #FO(A)team is the class of all functions
f : {0, 1}∗ → N for which there exists,

I vocabulary σ with a built-in linear order ≤,

I a FO(A)-formula ϕ(x) over σ with a tuple of free first-order
variables x ,

s.t. for all σ-structures A,

f (encσ(A)) = |{X | A �X ϕ(x)}|,

or for all σ-structures A,

f (encσ(A)) = |{X | X 6= ∅ and A �X ϕ(x)}|.

We denote by fϕ and f ∗ϕ the functions defined by ϕ in this way,
respectively.

A Characterization of # · NP

Theorem
For any set A of NP-definable generalized atoms,
#FO(A)team ⊆ # · NP.

Theorem
· NP = #Σ1

1 = #FO(⊥)team

Proof.
First note that

#Σ1
1 = #FO(⊥)team, (2)

since any φ(R) ∈ Σ1
1 with a k-ary relation symbol R can be easily

turned into a sentence φ′(R ′) for some (k + 1)-ary R ′ such that φ
and φ′ define the same functions and φ′(R ′) is only satisfied by
non-empty relations. Hence it suffices to show # ·NP ⊆ #Σ1

1 which
is straightforward by Fagin’s theorem.

The class #FO(=(. . .)),

Due to downward closure of FO(=(. . .)) we cannot expect
#FO(=(. . .)) to be equal to #P or # · NP. Still, we can show that
the class contains a complete problem for # · NP.

We first show that the function Σ1-3CNF− is # · NP-complete, and
place it in the class #FO(=(. . .)).

Theorem
#Σ1-CNF− is # · NP complete under Turing reductions.

Axiomatizing #Σ1-CNF−

In first-order logic we encode Σ1-3CNF−-formulae as structures over
the vocabulary

τΣ1-3CNF− = (P1,Q1,C 3
0 ,C

3
1 ,C

3
2 ,C

3
3).

Let ϕ ∈ Σ1-3CNF−. ϕ is encoded by the structure
A = (A,PA,QA,CA0 ,C

A
1 ,C

A
2 ,C

A
3) with A = Vars(ϕ).

I P(x): x is a free variable in ϕ

I Q(x): x is a bound variable in ϕ

I Ci (x1, x2, x3): there is 0 ≤ j ≤ i such that P(xk) for 1 ≤ k ≤ j ,
and

∨i
`=1 ¬x` ∨

∨3
`=i+1 x` is a clause in ϕ

Theorem
#Σ1-3CNF− is definable in Σ1-formula φ(R) in which R appears
only negatively and also in #FO(=(. . .))team.

The class #FO(⊆)team

Theorem
#FO(⊆)team ⊆ #P.

Lemma
Let σ be a vocabulary and ϕ(x) ∈ FO(⊆) a formula over σ. Then
the language L ··= {w | f ∗ϕ (w) > 0} is in P.

Corollary

If P 6= NP, then #FO(⊆)team 6= #P.

Placing a #P-complete problem in #FO(⊆)team

Theorem
#2-CNF+ ∈ #FO(⊆)team

Proof.

1. Let ϕ(x1, . . . , xn) =
∧
Di , where Di = `i ,1 ∨ `i ,2 and

`i ,j ∈ {x1, . . . , xn},
2. ϕ(x1, . . . , xn) is encoded by A = ({x1, . . . , xn},DA) with

(x , y) ∈ DA iff the clause x ∨ y occurs in ϕ.

3. The number of teams X with domain {t} satisfying γ def. by

A |=X ∀x∀y(¬D(x , y) ∨ x ⊆ t ∨ y ⊆ t)

is equal to the number of satisfying assignments of ϕ, hence
#2-CNF+ = f ∗γ .

Complete problems

For the theorems below, we restrict attention to functions counting
also the empty team, i.e., the functions f ∗ϕ are omitted.

Theorem
#Σ1-CNF− is complete (hard) for #FO(=(. . .))team under
parsimonious reductions.

Theorem
#Σ1-DualHorn is complete (hard) for #FO(⊆)team under
parsimonious reductions.

Conclusion

I We determined the complexity of dependence, independence
and inclusion logic.

I Same kind on analysis can be made for other logics with team
semantics.

I Can smaller counting classes defined, e.g., by arithmetic
circuits be logically characterized in this framework?

