Counting of Teams in First-Order Team Logics

Juha Kontinen

November 30, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

- This is joint work with A. Haak, F. Müller, H. Vollmer, and F. Yang.
- The question of the power of counting arises in propositional and predicate logic in a number of contexts. We do extend logics by counting constructs but consider functions arising form counting tuple and relations satisfying a fixed formula.
- A fundamental counting problem on propositional formulas, #SAT, counts the number of satisfying assignments of a given formula. It is complete for Valiant's class #P that counts accepting paths of nondeterministic polynomial-time Turing machines.
- The class #P is the counting analogue of NP corresponding to existential second order logic, where the quantified relation encodes accepting computation paths of NP-machines. Hence, if we define #FO^{rel} to count accepting assignments to free relational variables in FO-formulae, we obtain #FO^{rel} = #P. [Saluja et al., 95].

Introduction cont.

- We consider a different model-theoretic way to study counting processes using team-based logics. Here, formulae with free variables are evaluated not for a single assignment to these variables but for sets of such assignments.
- We define #FO^{team} to be the class of functions counting teams that satisfy a given FO-formula, and similarly for extensions of FO by various dependencies in team semantics.

Preliminaries

Formulae of first-order logic (FO) are defined by the following grammar:

 $\varphi ::= \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \forall x \varphi \mid R(\overline{t}) \mid \neg R(\overline{t}) \mid t_1 = t_2 \mid \neg t_1 = t_2$

- We consider finite ordered structures with a finite vocabulary σ consisting of relation and constant symbols.
- ► The class of such σ-structures is denoted by STRUC[σ]. We write enc_σ(A) for the binary encoding of a σ-structure A.

Basics of team semantics

For a team X, a structure \mathcal{A} , and $\phi \in FO$, $\mathcal{A} \models_X \phi$ is def. by:

- $\mathcal{A} \vDash_{X} \alpha$ for α a literal, iff for all $s \in X$, $\mathcal{A} \vDash_{s} \alpha$.
- $\mathcal{A} \models_X \varphi \lor \psi$, iff there are teams $Y, Z \subseteq X$ s.t. $Y \cup Z = X$, $\mathcal{A} \models_Y \varphi$ and $\mathcal{A} \models_Z \psi$.
- $\mathcal{A} \models_{X} \varphi \land \psi$, iff $\mathcal{A} \models_{X} \varphi$ and $\mathcal{A} \models_{X} \psi$.
- $\mathcal{A} \models_X \exists x \varphi$, iff there exists a function $F \colon X \to \mathcal{P}(\mathcal{A}) \setminus \{\emptyset\}$, s.t. $\mathcal{A} \models_{X[F/x]} \varphi$.

• $\mathcal{A} \models_X \forall x \varphi$, iff $\mathcal{A} \models_{X[\mathcal{A}/x]} \varphi$.

Team semantics cont.

- A sentence φ is *true* in \mathcal{A} , written $\mathcal{A} \models \varphi$, if $\mathcal{A} \models_{\{\emptyset\}} \varphi$.
- First-order formulae φ are flat, i.e., A ⊨_X φ, iff A ⊨_s φ for all s ∈ X.

The semantics of the relevant dependency atoms are defined by:

- $\mathcal{A} \models_X = (\overline{x}, y)$, iff for all $s, s' \in X$, if $s(\overline{x}) = s'(\overline{x})$, then s(y) = s'(y).
- $\mathcal{A} \models_X \overline{x} \perp_{\overline{y}} \overline{z}$, iff for all $s, s' \in X$ such that $s(\overline{y}) = s'(\overline{y})$, there exists $s'' \in X$ such that $s''(\overline{y}) = s(\overline{y})$, $s''(\overline{x}) = s(\overline{x})$ and s''(z) = s'(z).
- $\mathcal{A} \models_X \overline{x} \subseteq \overline{y}$, iff for all $s \in X$ there is $s' \in X$ such that $s(\overline{x}) = s'(\overline{y})$.

Dependence, independence, and inclusion logic

We recall some basic properties of FO(=(...)), FO(\subseteq), and FO(\perp):

- Formulae of FO(=(...)) are closed downwards, i.e., A ⊨_X φ and Y ⊆ X imply A ⊨_Y φ.
- Formulae of FO(⊆) are closed under unions, i.e., A ⊨_X φ and A ⊨_Y φ imply A ⊨_{X∪Y} φ.
- Formulae of any of these logics have the *empty team property*, i.e., A ⊨_∅ φ always holds.

Expressive power of team based logics

Recall that existential second-order logic (Σ_1^1) consists of formulas of the form $\exists R_1 \dots \exists R_k \varphi$, where φ is a first-order formula.

Theorem

1. For every σ -formula φ of FO(\perp), there is an $\sigma(R)$ -sentence $\psi(R)$ of Σ_1^1 such that for all σ -structures \mathcal{A} and teams $X \neq \emptyset$,

$$\mathcal{A}\models_{X}\varphi\iff (\mathcal{A}, \operatorname{rel}(X))\models\psi(R), \tag{1}$$

and vice versa.

- The above holds for FO(=(...)) as well, except that in both directions for FO(=(...)) the relation symbol R is assumed to occur only negatively in the sentence ψ(R).
- For any sentence φ ∈ FO(⊆), there exists an equivalent sentence ψ of positive greatest fixed point logic (posGFP) and vice versa.

Propositional and quantified Boolean formulae

- ▶ We use CNF to denote propositional formulae in conjunctive normal form and k-CNF to denote the class such formulae where each clause contains at most k literals.
- ► A formula in CNF is the class DualHorn, if each of its clauses contains at most one negative literal.
- For a class C of formulae, we denote by Σ₁-C the class of quantified Boolean formulae in prenex normal form with only existential quantifiers where the quantifier-free part is is an element of C.
- ▶ With C⁺(resp. C⁻) we denote the class of formulae in C whose free variables occur only positively (resp. negatively).

Counting problems and classes

Definition

A function $f: \{0,1\}^* \to \mathbb{N}$ is in #P, if there is a non-deterministic TM *M* such that for all inputs $x \in \{0,1\}^*$:

f(x) = the number of acc. computation paths of M with x.

This definition can be generalized as follows.

Definition

Let C be a complexity class. A function $f: \{0,1\}^* \to \mathbb{N}$ is in $\# \cdot C$, if there is a language $L \in C$ and a polynomial p s.t. for all $x \in \{0,1\}^*$:

$$f(x) = |\{y \mid |y| \le p(|x|) \text{ and } (x, y) \in L\}|.$$

Now $\#P = \# \cdot P$, and $\#P \subseteq \# \cdot NP$.

Logically defined counting classes

Definition

A function $f: \{0,1\}^* \to \mathbb{N}$ is in $\#FO^{rel}$, if there exists:

- a vocabulary σ with a built-in linear order \leq ,
- ▶ an FO[σ]-formula $\varphi(R_1, \ldots, R_k, x_1, \ldots, x_\ell)$ with free variables R_1, \ldots, R_k and x_1, \ldots, x_ℓ ,
- s.t. for all σ -structures \mathcal{A} ,

$$f(\mathrm{enc}_{\sigma}(\mathcal{A})) = |\{(S_1,\ldots,S_k,c_1,\ldots,c_\ell) \mid \mathcal{A} \vDash \varphi(S_1,\ldots,S_k,c_1,\ldots,c_\ell)|.$$

If the input of f is not of this form, we assume f takes the value 0.

Logically defined counting classes

In the same fashion, subclasses of $\#FO^{rel}$, such as $\#\Sigma_k^{rel}$ and $\#\Pi_k^{rel}$ for arbitrary k, are defined by assuming that the formula φ in the above definition is in the corresponding fragments Σ_k and Π_k .

Theorem (Saluja et al., 95)

$$\begin{split} \# \Sigma_0^{\mathrm{rel}} = \# \Pi_0^{\mathrm{rel}} \subset \# \Sigma_1^{\mathrm{rel}} \subset \# \Pi_1^{\mathrm{rel}} \subset \# \Sigma_2^{\mathrm{rel}} \subset \# \Pi_2^{\mathrm{rel}} = \# \mathsf{FO}^{\mathrm{rel}} = \\ \# \mathsf{P}. \end{split}$$

Furthermore, it was shown that $\#\Sigma_0^{\mathrm{rel}} \subseteq \mathrm{FP}$.

A word on reductions

- Let f and h be counting problems. We say that f is parsimoniously reducible to h if there is a polynomial-time computable function g such for all inputs x, f(x) = h(g(x)),
- f is Turing reducible to h if $f \in FP^h$,
- *f* is *metrically* reducible to *h* if there are polynomial-time computable functions g₁, g₂ such for all inputs *x*,
 f(*x*) = g₂(*h*(g₁(*x*)), *x*). Note that metric reductions are thus Turing reductions with one oracle query.

For \mathcal{F} a class of quantified Boolean formulae, $\#\mathcal{F}$ is the function that, given a formula $\varphi \in \mathcal{F}$, outputs the number of satisfying assignments of φ . The functions #SAT and #3-CNF, are complete for #P under parsimonious reductions, while, e.g., #DNF and #2-CNF⁺ are complete for #P under metric reductions.

Example: #CNF vs. #DNF

We briefly explain why # DNF is # P-complete by reducing # CNF to it.

Suppose a CNF-formula $\psi(p_1, ..., p_n)$ is given as an input. Now the number of satisfying assignments for ψ can be computed as follows.

- 1. Transform $\neg \psi$ to DNF-form and calculate the number k of satisfying assignments of it,
- 2. Output $2^n k$.

Note that if this reduction could be made parsimonious, then the decision problem CNF would reduce to $\rm DNF$ which is unlikely.

Counting of teams

Definition

For any set A of atoms, $\#FO(A)^{team}$ is the class of all functions $f: \{0,1\}^* \to \mathbb{N}$ for which there exists,

- vocabulary σ with a built-in linear order \leq ,
- ► a FO(A)-formula φ(x̄) over σ with a tuple of free first-order variables x̄,
- s.t. for all σ -structures \mathcal{A} ,

$$f(\mathrm{enc}_{\sigma}(\mathcal{A})) = |\{X \mid \mathcal{A} \vDash_{X} \varphi(\overline{x})\}|,$$

or for all σ -structures \mathcal{A} ,

$$f(\operatorname{enc}_{\sigma}(\mathcal{A})) = |\{X \mid X \neq \emptyset \text{ and } \mathcal{A} \vDash_{X} \varphi(\overline{x})\}|.$$

We denote by f_{φ} and f_{φ}^{*} the functions defined by φ in this way, respectively.

A Characterization of $\# \cdot NP$

Theorem For any set A of NP-definable generalized atoms, $\#FO(A)^{team} \subseteq \# \cdot NP.$

 $\begin{array}{l} \text{Theorem} \\ \# \cdot \mathsf{NP} = \# \Sigma_1^1 = \# \mathsf{FO}(\bot)^{\mathsf{team}} \end{array}$

Proof.

First note that

$$\#\Sigma_1^1 = \#\mathsf{FO}(\bot)^{\mathsf{team}},\tag{2}$$

since any $\phi(R) \in \Sigma_1^1$ with a k-ary relation symbol R can be easily turned into a sentence $\phi'(R')$ for some (k + 1)-ary R' such that ϕ and ϕ' define the same functions and $\phi'(R')$ is only satisfied by non-empty relations. Hence it suffices to show $\# \cdot \text{NP} \subseteq \#\Sigma_1^1$ which is straightforward by Fagin's theorem. The class #FO(=(...)),

Due to downward closure of FO(=(...)) we cannot expect #FO(=(...)) to be equal to #P or $\# \cdot$ NP. Still, we can show that the class contains a complete problem for $\# \cdot$ NP.

We first show that the function Σ_1 -3CNF⁻ is $\# \cdot$ NP-complete, and place it in the class #FO(=(...)).

Theorem

 $\#\Sigma_1$ -CNF⁻ is $\# \cdot$ NP complete under Turing reductions.

Axiomatizing $\#\Sigma_1$ -CNF⁻

In first-order logic we encode $\Sigma_1\mbox{-}3\mbox{CNF}^-\mbox{-}$ formulae as structures over the vocabulary

$$\tau_{\Sigma_1\text{-}3\mathsf{CNF}^-} = (P^1, Q^1, C_0^3, C_1^3, C_2^3, C_3^3).$$

Let $\varphi \in \Sigma_1$ -3CNF⁻. φ is encoded by the structure $\mathcal{A} = (\mathcal{A}, \mathcal{P}^{\mathcal{A}}, \mathcal{Q}^{\mathcal{A}}, \mathcal{C}_0^{\mathcal{A}}, \mathcal{C}_1^{\mathcal{A}}, \mathcal{C}_2^{\mathcal{A}}, \mathcal{C}_3^{\mathcal{A}})$ with $\mathcal{A} = \operatorname{Vars}(\varphi)$.

- P(x): x is a free variable in φ
- Q(x): x is a bound variable in φ
- ▶ $C_i(x_1, x_2, x_3)$: there is $0 \le j \le i$ such that $P(x_k)$ for $1 \le k \le j$, and $\bigvee_{\ell=1}^i \neg x_\ell \lor \bigvee_{\ell=i+1}^3 x_\ell$ is a clause in φ

Theorem

 $\#\Sigma_1$ -3CNF⁻ is definable in Σ_1 -formula $\phi(R)$ in which R appears only negatively and also in $\#FO(=(\dots))^{team}$.

The class $\#FO(\subseteq)^{team}$

Theorem $\#FO(\subseteq)^{team} \subseteq \#P.$

Lemma

Let σ be a vocabulary and $\varphi(\overline{x}) \in FO(\subseteq)$ a formula over σ . Then the language $L := \{w \mid f_{\varphi}^*(w) > 0\}$ is in P.

Corollary

If $P \neq NP$, then $\#FO(\subseteq)^{team} \neq \#P$.

Placing a #P-complete problem in #FO(\subseteq)^{team}

Theorem $#2\text{-}CNF^+ \in #FO(\subseteq)^{team}$

Proof.

1. Let
$$\varphi(x_1, \ldots, x_n) = \bigwedge D_i$$
, where $D_i = \ell_{i,1} \lor \ell_{i,2}$ and $\ell_{i,j} \in \{x_1, \ldots, x_n\}$,

- 2. $\varphi(x_1, \ldots, x_n)$ is encoded by $\mathcal{A} = (\{x_1, \ldots, x_n\}, D^{\mathcal{A}})$ with $(x, y) \in D^{\mathcal{A}}$ iff the clause $x \lor y$ occurs in φ .
- 3. The number of teams X with domain $\{t\}$ satisfying γ def. by

$$\mathcal{A} \models_X \forall x \forall y (\neg D(x, y) \lor x \subseteq t \lor y \subseteq t)$$

is equal to the number of satisfying assignments of φ , hence $\#2\text{-}\mathsf{CNF}^+ = f_\gamma^*$.

For the theorems below, we restrict attention to functions counting also the empty team, i.e., the functions f^*_{ω} are omitted.

Theorem

 $\#\Sigma_1$ -CNF⁻ is complete (hard) for $\#FO(=(...))^{team}$ under parsimonious reductions.

Theorem

 $\#\Sigma_1$ -DualHorn is complete (hard) for $\#FO(\subseteq)^{team}$ under parsimonious reductions.

Conclusion

- We determined the complexity of dependence, independence and inclusion logic.
- Same kind on analysis can be made for other logics with team semantics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Can smaller counting classes defined, e.g., by arithmetic circuits be logically characterized in this framework?