Counting of Teams in First-Order Team Logics

Juha Kontinen

November 30, 2018

Introduction

» This is joint work with A. Haak, F. Miiller, H. Vollmer, and F.
Yang.

» The question of the power of counting arises in propositional
and predicate logic in a number of contexts. We do extend
logics by counting constructs but consider functions arising
form counting tuple and relations satisfying a fixed formula.

» A fundamental counting problem on propositional formulas,
#SAT, counts the number of satisfying assignments of a given
formula. It is complete for Valiant's class #P that counts
accepting paths of nondeterministic polynomial-time Turing
machines.

» The class #P is the counting analogue of NP corresponding to
existential second order logic, where the quantified relation
encodes accepting computation paths of NP-machines. Hence,
if we define #FO™! to count accepting assignments to free
relational variables in FO-formulae, we obtain #FO™! = #P.
[Saluja et al., 95].

Introduction cont.

» We consider a different model-theoretic way to study counting
processes using team-based logics. Here, formulae with free
variables are evaluated not for a single assignment to these
variables but for sets of such assignments.

» We define #FO™™ to be the class of functions counting
teams that satisfy a given FO-formula, and similarly for
extensions of FO by various dependencies in team semantics.

Preliminaries

» Formulae of first-order logic (FO) are defined by the following
grammar:

pu=pAp | Ve | Ixp | Vxp | R(E) | R(t) |[ti =t | ~t1 =t

» We consider finite ordered structures with a finite vocabulary o
consisting of relation and constant symbols.

» The class of such o-structures is denoted by STRUC[o]. We
write enc,(.A) for the binary encoding of a o-structure A.

Basics of team semantics

For a team X, a structure A, and ¢ € FO, A [=x ¢ is def. by:

v

AEx o for « a literal, iff for all s € X, AEs a.

A Ex ¢ V1, iff there are teams Y, Z C X s.it. YUZ = X,
.A':y(pandA':Zw.

AEx e ANy, iff AlEx ¢ and A |E=x 1.

A =x Ixp, iff there exists a function F: X — P(A)\ {0}, s.t.
A Ex[F/x #-

A Ex Vxp, iff AExia/x ¢-

v

v

v

v

Team semantics cont.

> A sentence ¢ is true in A, written A |= ¢, if A =g .

» First-order formulae ¢ are flat, i.e., A Ex ¢, iff AEg o for all
s e X.

The semantics of the relevant dependency atoms are defined by:

» A Ex=(x,y), iff for all s,s" € X, if s(x) = s'(X), then
s(y) =s'(y).

» A Ex XLyz, iff for all s,s" € X such that s(y) = s'(y), there
exists s € X such that s”(y) = s(¥), s"(X) = s(X) and
s"(z) = $'(2).

» AEx x Cy, iff for all s € X there is s’ € X such that
s(x) = s'(y).

Dependence, independence, and inclusion logic

We recall some basic properties of FO(=(...)), FO(C), and FO(L):
» Formulae of FO(=(...)) are closed downwards, i.e., A Ex ¢
and Y C X imply A =y .
» formulae of FO(C) are closed under unions, i.e., A =x ¢ and
Ay ¢ imply AExuy ¢
» Formulae of any of these logics have the empty team property,
i.e., A g ¢ always holds.

Expressive power of team based logics
Recall that existential second-order logic (1) consists of formulas
of the form ARy ... 3Rkp, where ¢ is a first-order formula.
Theorem

1. For every o-formula ¢ of FO(.L), there is an o(R)-sentence
Y(R) of £} such that for all o-structures A and teams X #),

AbEx ¢ = (A rel(X)) = ¢(R), (1)

and vice versa.

2. The above holds for FO(=(...)) as well, except that in both
directions for FO(=(...)) the relation symbol R is assumed to
occur only negatively in the sentence 1)(R).

3. For any sentence ¢ € FO(Q), there exists an equivalent

sentence v of positive greatest fixed point logic (posGFP) and
vice versa.

Propositional and quantified Boolean formulae

» We use CNF to denote propositional formulae in conjunctive
normal form and k-CNF to denote the class such formulae
where each clause contains at most k literals.

» A formula in CNF is the class DualHorn, if each of its clauses
contains at most one negative literal.

» For a class C of formulae, we denote by > 1-C the class of
quantified Boolean formulae in prenex normal form with only
existential quantifiers where the quantifier-free part is is an
element of C.

» With C*(resp. C™) we denote the class of formulae in C whose
free variables occur only positively (resp. negatively).

Counting problems and classes

Definition
A function f: {0,1}* — N is in #P, if there is a non-deterministic
TM M such that for all inputs x € {0,1}*:

f(x) = the number of acc. computation paths of M with x.
This definition can be generalized as follows.
Definition
Let C be a complexity class. A function f: {0,1}* — Nisin #-C, if
there is a language L € C and a polynomial p s.t. for all x € {0,1}*:
f(x) =y [lyl < p(Ix]) and (x,y) € L}].

Now #P = # - P, and #P C # - NP.

Logically defined counting classes

Definition
A function f: {0,1}* — N is in #FO™!, if there exists:
» a vocabulary o with a built-in linear order <,

» an FO[o]-formula ¢(Ri,. .., Rk, x1,...,x¢) with free variables
Rl,...,Rk and X1y .-y Xp,

s.t. for all o-structures A,
f(encg(.A)) = |{(51, .. .,Sk, Cly.e. vy Cg) | AE gO(Sl, ey Sk, Cly.--y Cg}|.

If the input of f is not of this form, we assume f takes the value 0.

Logically defined counting classes

In the same fashion, subclasses of #FO™!, such as #Zrel and #I’I]f(el
for arbitrary k, are defined by assuming that the formula ¢ in the
above definition is in the corresponding fragments X, and I.
Theorem (Saluja et al., 95)

#Zael _ #I—lrel c #Zrel c #nrel c #zrel - #nrel 4FO™ —

#P.

Furthermore, it was shown that #del C FP.

A word on reductions

> Let f and h be counting problems. We say that f is
parsimoniously reducible to h if there is a polynomial-time
computable function g such for all inputs x, f(x) = h(g(x)),

» f is Turing reducible to h if f € FP",

> f is metrically reducible to h if there are polynomial-time
computable functions g1, g» such for all inputs x,
f(x) = g2(h(g1(x)), x). Note that metric reductions are thus
Turing reductions with one oracle query.

For F a class of quantified Boolean formulae, #F is the function
that, given a formula ¢ € F, outputs the number of satisfying
assignments of . The functions #SAT and #3-CNF, are complete
for #P under parsimonious reductions, while, e.g., #DNF and
#2-CNF™ are complete for #P under metric reductions.

Example: #CNF vs. #DNF

We briefly explain why #DNF is #P-complete by reducing #CNF
to it.

Suppose a CNF-formula ¥ (p1, ..., pn) is given as an input. Now the
number of satisfying assignments for 1) can be computed as follows.

1. Transform —) to DNF-form and calculate the number k of
satisfying assignments of it,

2. Output 2" — k.

Note that if this reduction could be made parsimonious, then the
decision problem CNF would reduce to DNF which is unlikely.

Counting of teams

Definition
For any set A of atoms, #FO(A)*™ is the class of all functions
f:{0,1}* — N for which there exists,

» vocabulary ¢ with a built-in linear order <,

» a FO(A)-formula ¢(X) over o with a tuple of free first-order
variables X,

s.t. for all o-structures A,
f(enco (A)) = {X | AFx (X)}];
or for all o-structures A,
flency(A)) = {X | X # 0 and AFx ¢(X)}|.

We denote by f, and fJ the functions defined by ¢ in this way,
respectively.

A Characterization of # - NP

Theorem

For any set A of NP-definable generalized atoms,
#FO(A)*™ C # - NP.

Theorem
NP = #¥1 = #FO(L)*™

Proof.
First note that

#T1 = #FO(L)"™™, (2)

since any ¢(R) € L1 with a k-ary relation symbol R can be easily
turned into a sentence ¢/(R’) for some (k + 1)-ary R’ such that ¢
and ¢ define the same functions and ¢'(R’) is only satisfied by
non-empty relations. Hence it suffices to show # - NP C #¥1 which
is straightforward by Fagin's theorem.

[

The class #FO(=(...)),

Due to downward closure of FO(=(...)) we cannot expect
#FO(=(...)) to be equal to #P or # - NP. Still, we can show that
the class contains a complete problem for # - NP.

We first show that the function £1-3CNF™ is # - NP-complete, and
place it in the class #FO(=(...)).

Theorem
#21-CNF~ is # - NP complete under Turing reductions.

Axiomatizing #21-CNF™

In first-order logic we encode ¥ 1-3CNF~-formulae as structures over
the vocabulary

753~ = (PL QL GL GG G).

Let ¢ € £1-3CNF™. ¢ is encoded by the structure
A= (A PA QA G, CA, G54, Gf) with A = Vars(p).
» P(x): x is a free variable in ¢
» Q(x): x is a bound variable in ¢
» Ci(x1,x2,x3): there is 0 < j < i such that P(xx) for 1 < k <,
and \/j_; —x; V \V/i_is1 xc is a clause in ¢

Theorem
#31-3CNF~ is definable in X1-formula ¢(R) in which R appears

only negatively and also in #FO(=(...))*".

The class #FO(C)™™

Theorem
#FO(C)™™ C #P.

Lemma

Let o be a vocabulary and p(X) € FO(C) a formula over o. Then
the language L := {w | f;(w) > 0} is in P.

Corollary

IFP £ NP, then #FO(C)™™ £ #P.

Placing a #P-complete problem in #FO(C)*™

Theorem
#2-CNF € #FO(C)™m

Proof.
1. Let gD(Xl, .. ,X,,) = /\ D;, where D; = f,’71 vV f,‘yg and
gi,j S {Xl,...,Xn},

2. ¢(x1,...,xn) is encoded by A = ({x1,...,x,}, D) with
(x,y) € DA iff the clause x VV y occurs in .

3. The number of teams X with domain {t} satisfying v def. by
A Ex ¥xVy(-D(x,y) Vx CtVy Ct)

is equal to the number of satisfying assignments of ¢, hence
#2-CNF+ = £

O

Complete problems

For the theorems below, we restrict attention to functions counting
also the empty team, i.e., the functions £ are omitted.

Theorem
#51-CNF~ is complete (hard) for #FO(=(...))**™ under
parsimonious reductions.

Theorem
#5 1-DualHorn is complete (hard) for #FO(C)"*™ under
parsimonious reductions.

Conclusion

» We determined the complexity of dependence, independence
and inclusion logic.

» Same kind on analysis can be made for other logics with team
semantics.

» Can smaller counting classes defined, e.g., by arithmetic
circuits be logically characterized in this framework?

