A model theory dichotomy in generalized descriptive set theory

Miguel Moreno (joint work with Tapani Hyttinen and Vadim Kulikov)

UH-CAS Workshop on mathematical logic

30 October 2018

Miguel Moreno (UH-CAS)

30 October 2018 1 / 29

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 The dichotomy

Classifying First-order countable Theories

Outline

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 The dichotomy

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

```
What is the behavior of I(T, \alpha)?
```

For first order theory in a countable vocabulary:

- Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \neq 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \neq 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, *I*(*T*, α) = 2^α, or ∀α > 0 *I*(*T*, ℵ_α) < □_{ω1}(| α |).

Classifying First-order countable Theories

Approaches

• Shelah's stability theory.

Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

• Descriptive set theory:

It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

The topology

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

The generalized Baire space is the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa}$, the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

κ -Borel sets

The collection of κ -Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

A function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ is κ -Borel, if for every open set $A \subseteq \kappa^{\kappa}$ the inverse image $f^{-1}[A]$ is a κ -Borel subset of κ^{κ} .

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a κ -Borel function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq_B^{\kappa} E_2$.

Coding structures

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

Classifying First-order countable Theories

The Borel-reducibility hierarchy

We can define a partial order on the set of all first-order countable theories

$$T \leqslant_{\kappa}^{\kappa} T'$$
 iff $\cong_{T}^{\kappa} \leqslant_{B}^{\kappa} \cong_{T'}^{\kappa}$

The generalized Cantor space

In the subspace 2^{κ} , we can define the following notions in the same way:

- $E_1 \leqslant^2_B E_2$.
- $f \cong^2_T g$.
- $T \leq^2_{\kappa} T'$.

Since (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

defines the structure \mathcal{A}_f in both cases $(f \in 2^{\kappa} \text{ and } f \in \kappa^{\kappa})$, $T \leq_{\kappa}^{2} T'$ if and only if $T \leq_{\kappa}^{\kappa} T'$.

Classifying First-order countable Theories

Question

Is there a relation between these two notions of complexity?

The Main Gap Theorem

Outline

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 The dichotomy

The Main Gap Theorem

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem?

The countable case

 $T = Th(\mathbb{Q}, \leq).$ T', the theory of vector space over the field of rational numbers.

By the Borel-reducibility hierarchy:

$$T \leq_{\omega}^{\omega} T'$$
$$T' \not\leq_{\omega}^{\omega} T$$

By the stability theory T' is simpler than T.

 $E_{\lambda-\text{club}}^{\kappa}$ and $E_{\lambda-\text{club}}^{2}$

For every regular cardinal $\lambda < \kappa$, the relations $E_{\lambda-\text{club}}^{\kappa}$ and $E_{\lambda-\text{club}}^{2}$ are defined as follow.

Definition

- On the space κ^κ, we say that f, g ∈ κ^κ are E^κ_{λ-club} equivalent if the set {α < κ|f(α) = g(α)} contains an unbounded set closed under λ-limits.
- On the space 2^{κ} , we say that $f, g \in 2^{\kappa}$ are $E^{2}_{\lambda-club}$ equivalent if the set $\{\alpha < \kappa | f(\alpha) = g(\alpha)\}$ contains an unbounded set closed under λ -limits.

Non-classifiable theories

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

1 If T is unstable or superstable with OTOP, then $E_{\lambda-club}^2 \leq_B^2 \cong_T^2$. **2** If $\lambda \ge 2^{\omega}$ and T is superstable with DOP, then $E_{\lambda-club}^2 \leq_B^2 \cong_T^2$.

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable theory. Then $E^2_{\omega\text{-club}} \leq^2_B \cong^2_T$.

Classifiable theories

Theorem (Hyttinen, Moreno)

Suppose T is a classifiable theory and $\lambda < \kappa$. Then $\cong_T^{\kappa} \leq_B^{\kappa} E_{\lambda-club}^{\kappa}$.

A Borel reducibility counterpart

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq_{\kappa}^{2} T'$ and $T' \leq_{\kappa}^{2} T$.

Theorem (Hyttinen, Kulikov, Moreno)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

- 1 If V = L, then $H(\kappa)$ holds.
- It is consistent that H(κ) holds and there are 2^κ equivalence relations strictly between ≅²_T and ≅²_{T'}.

The Main Gap Theorem

Questions

Question

Is there an uncountable cardinal κ , such that $H(\kappa)$ is a theorem of ZFC?

Question

Have all the non-classifiable theories the same complexity?

Outline

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 The dichotomy

Σ_1^1 -completeness

An equivalence relation E on $X \in \{\kappa^{\kappa}, 2^{\kappa}\}$ is Σ_1^1 or *analytic*, if E is the projection of a closed set in $X^2 \times \kappa^{\kappa}$ and it is Σ_1^1 -complete or *analytic complete* if it is Σ_1^1 (analytic) and every Σ_1^1 (analytic) equivalence relation is Borel reducible to it.

$$E^2_{\lambda ext{-club}}$$
 in L

Theorem

(V = L). For every $\lambda < \kappa$ regular, $E_{\lambda-club}^2$ is a Σ_1^1 -complete equivalence relation.

Proof

Definition

- We define a class function F_{\Diamond} : $On \to L$. For all α , $F_{\Diamond}(\alpha)$ is a pair (X_{α}, C_{α}) where $X_{\alpha}, C_{\alpha} \subseteq \alpha$, C_{α} is a club if α is a limit ordinal and $C_{\alpha} = \emptyset$ otherwise. We let $F_{\Diamond}(\alpha) = (X_{\alpha}, C_{\alpha})$ be the $<_L$ -least pair such that for all $\beta \in C_{\alpha}$, $X_{\beta} \neq X_{\alpha} \cap \beta$ if α is a limit ordinal and such pair exists and otherwise we let $F_{\Diamond}(\alpha) = (\emptyset, \emptyset)$.
- We let $C_{\Diamond} \subseteq On$ be the class of all limit ordinals α such that for all $\beta < \alpha$, $F_{\Diamond} \upharpoonright \beta \in L_{\alpha}$. Notice that for every regular cardinal α , $C_{\Diamond} \cap \alpha$ is a club.

Definition

For all regular cardinal α and set $A \subset \alpha$, we define the sequence $(X_{\gamma}, C_{\gamma})_{\gamma \in A}$ as the sequence $(F_{\Diamond}(\gamma))_{\gamma \in A}$, and the sequence $(X_{\gamma})_{\gamma \in A}$ as the sequence of sets X_{γ} such that $F_{\Diamond}(\gamma) = (X_{\gamma}, C_{\gamma})$ for some C_{γ} .

By ZF^- we mean ZFC + (V = L) without the power set axiom. By ZF^\diamond we mean ZF^- with the following axiom: "For all regular ordinals $\mu < \alpha$ if $(S_\gamma, D_\gamma)_{\gamma \in \alpha}$ is such that for all $\gamma < \alpha$, $F_\diamond(\gamma) = (S_\gamma, D_\gamma)$, then $(S_\gamma)_{\gamma \in S^\alpha_\mu}$ is a diamond sequence, where S^α_μ is the set of ordinals smaller than α with cofinality μ ."

Lemma

(V = L) For any Σ_1 -formula $\varphi(\eta, x)$ with parameter $x \in 2^{\kappa}$, a regular cardinal $\mu < \kappa$, the following are equivalent for all $\eta, \xi \in 2^{\kappa}$:

- $\varphi(\eta, \xi, x)$
- $S \setminus A$ is non-stationary, where $S = \{ \alpha \in S^{\kappa}_{\mu} \mid X_{\alpha} = \eta^{-1}\{1\} \cap \alpha \}$ and

 $A = \{ \alpha \in C_{\Diamond} \cap \kappa \mid \exists \beta > \alpha (L_{\beta} \models ZF^{\diamond} \land \varphi(\eta \restriction \alpha, \xi \restriction \alpha, x \restriction \alpha) \land r(\alpha)) \}$

where $r(\alpha)$ is the formula " α is a regular cardinal".

Suppose *E* is a Σ_1^1 equivalence relation. There is a Σ_1 -formula of set theory $\psi(\eta, \xi) = \psi(\eta, \xi, x) = \exists k \varphi(k, \eta, \xi, x) \lor \eta = \xi$ with $x \in 2^{\kappa}$, such that for all $\eta, \xi \in 2^{\kappa}$,

$$(\eta,\xi)\in E\Leftrightarrow\psi(\eta,\xi),$$

Let $r(\alpha)$ be the formula " α is a regular cardinal" and $\psi^{E}(\kappa)$ be the sentence with parameter κ that asserts that $\psi(\eta, \xi)$ defines an equivalence relation on 2^{κ} . For all $\eta \in 2^{\kappa}$ and $\alpha < \kappa$, let

$$T_{\eta,\alpha} = \{ p \in 2^{\alpha} \mid \exists \beta > \alpha (L_{\beta} \models ZF^{\diamond} \land \psi(p,\eta \restriction \alpha, x \restriction \alpha) \land r(\alpha) \land \psi^{E}(\alpha)) \}.$$

Let $(X_{\alpha})_{\alpha \in S_{\mu}^{\kappa}}$ be the diamond sequence from F_{\Diamond} , and for all $\alpha \in S_{\mu}^{\kappa}$, let \mathcal{X}_{α} be the characteristic function of X_{α} . Define $\mathcal{F} \colon 2^{\kappa} \to 2^{\kappa}$ by

$$\mathcal{F}(\eta)(lpha) = egin{cases} 1 & ext{if } \mathcal{X}_lpha \in \mathcal{T}_{\eta,lpha} ext{ and } lpha \in \mathcal{S}^\kappa_\mu \ 0 & ext{otherwise} \end{cases}$$

Miguel Moreno (UH-CAS)

30 October 2018 27 / 29

The dichotomy

Theorem

(V = L) Suppose that $\kappa = \kappa^{<\kappa} = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. If T is a theory in a countable vocabulary. Then one of the following holds.

- \cong_T^{κ} is Δ_1^1 (all the complete extensions of T are classifiable).
- \cong_T^{κ} is Σ_1^1 -complete (T has at least one non-classifiable extension).

Notice that T is not required to be complete.

Remark

The previous result is not a theorem of ZFC, not even when it is restricted to complete theories.

Thank you